Skip to main content
Log in

Clam shell repair from the brown ring disease: a study of the organic matrix using Confocal Raman micro-spectrometry and WDS microprobe

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Since 1987, the Manila clam Ruditapes philippinarum has been regularly affected by the brown ring disease (BRD), an epizootic caused by the bacterium Vibrio tapetis. This disease is characterized by the development of a brown deposit on the inner face of valves. While most of the clams die from the BRD infection, some of them are able to recover by mineralizing a new repair shell layer, which covers the brown deposit by a process of encapsulation. The purpose of this work was to study the organic matrix of the shells of Manila clams in the inner shell layer before, during and after the brown deposit and during the shell repair process by confocal Raman micro-spectrometry and wavelength dispersive spectrometry (WDS) microprobe. In addition, the organic matrix of the repaired shell layer was extracted and quantified, by using standard biochemical shell matrix extractions protocols. The brown deposit exhibited high luminescence intensity in Raman spectra, and an increase of S, C, Sr (forming two peaks) and a decrease of Ca, Na concentrations (% w/w), using WDS microprobe mapping and cross-sectional transects. The signature of these trace elements was similar to that recorded on periostracal lamina (% w/w). The high S concentration likely corresponds to the presence of a high amount of sulfated organic compounds. Interestingly, on cross-sectional transects, before the brown deposit, a thin layer of the shell showed also a high luminescence, which may suggest that this layer is modified by bacteria. After the brown deposit, at the beginning of the shell repair process, the luminescence and the S concentration remain high, before declining the level found in non-BRD-affected shells. Quantification of the organic matrix shows that the shell repair layer zone is significantly different from non-BRD-affected shell layer, in particular with a much higher amount of insoluble matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nudelman F, Gotliv BA, Addadi L, Weiner S (2006) J Struct Biol 153:176–187

    Article  CAS  Google Scholar 

  2. Addadi L, Moradian J, Shay E, Maroudas NG, Weiner S (1987) Proc Natl Acad Sci USA 84:2732–2736

    Article  CAS  Google Scholar 

  3. Treccani L, Mann K, Heinemann F, Fritz M (2006) Biophys J 91:2601–2608

    Article  CAS  Google Scholar 

  4. Guzman N, Ball A, Cuif JP, Dauphin Y, Denis A, Ortlieb L (2007) Microsc Microanal 13:1–7

    Article  Google Scholar 

  5. Marie B, Luquet G, Pais De Barros JP, Guichard N, Morel S, Alcaraz G, Bollache L, Marin F (2007) Febs J 274:2933–2945

    Article  CAS  Google Scholar 

  6. Dauphin Y, Cuif JP, Doucet J, Salome M, Susini J, Willams CT (2003) J Struct Biol 142:272–280

    Article  CAS  Google Scholar 

  7. Marin F, Luquet G, Marie B, Medakovic D (2008) Curr Top Dev Biol 80:209–276

    Article  CAS  Google Scholar 

  8. Wada K (1980) Initiation of mineralization in bivalve molluscs. In: Omori M and Watabe N (eds) The mechanisms of mineralization in animals and plants, proceedings of the Third International Biomineralization Symposium. Tokai University Press, Tokai

  9. Simkiss K (1965) Comp Biochem Physiol 16:427–435

    Article  CAS  Google Scholar 

  10. Miyashita T, Miyamoto H and Matsushiro A (2003) Expression of pearlin in Escherichia coli, a protein which participates in the nacreous layer formation of P. fucata pearls. In: Kobayashi I and Ozawa H (eds) Biomineralization (biom 2001), formation, diversity, evolution and application, Proceedings of the 8th symposium on biomineralizations. Tokai University Press, Kanagawa, 176-177

  11. Shen X, Belcher AM, Hansma PK, Stucky GD, Morse DE (1997) J Biol Chem 272:32472–32481

    Article  CAS  Google Scholar 

  12. Cuif JP, Dauphin Y, Flamand D, Frerotte B, Gautret P (1986) C R Acad Sc Paris 303(série II):251–256

    Google Scholar 

  13. Cheng TC (1967) Adv Mar Biol 5:60–80

    Google Scholar 

  14. George CD (1966) Aust Gemmol 8:10–26

    Google Scholar 

  15. Paillard C, Maes P (1994) Dis Aquat Org 19:137–146

    Article  Google Scholar 

  16. Breber P (1985) Oebelia 11:153–159

    Google Scholar 

  17. Flassch JP, Leborgne Y (1992) Introduction in Europe, from 1972 to 1980, of the Japanese Manila clam (Tapes philippinarum) and effects on aquaculture production and natural settlement. ICES Marine Symposium 194, Halifax, 92-96

  18. Borrego JJ, Castro D, Luque A, Paillard C, Maes P, Garcia MT, Ventosa A (1996) Int J Syst Bacteriol B 46:480–484

    CAS  Google Scholar 

  19. Paillard C, Maes P (1990) C R Acad Sci Paris, Série III 310:15–20

    Google Scholar 

  20. Paillard C (2004) Aquat Living Resour 17:467–475

    Article  Google Scholar 

  21. Paillard C, Maes P (1995) J Invertebr Pathol 65:91–100

    Article  Google Scholar 

  22. Paillard C, Maes P (1995) J Invertebr Pathol 65:101–110

    Article  Google Scholar 

  23. Trinkler N, Sinquin G, Querne J, Paillard C (2009) J Invertebr Pathol Submit

  24. Jolivet A, Bardeau JF, Fablet R, Paulet YM, De Pontual H (2008) Anal Bioanal Chem 392:551–560

    Article  CAS  Google Scholar 

  25. Jacobs DE, Soldati AL, Wirth R, Huth J, Wehrmeister U, Hofmeister W (2008) Geochim Cosmochim Acta 72:5401–5415

    Article  Google Scholar 

  26. Takeuchi T, Sarashina I, Iijima M, Endo K (2008) FEBS Lett 582:591–596

    Article  CAS  Google Scholar 

  27. Hedegaard C, Bardeau JF, Chateigner D (2006) Journal of Mulluscan studies 72:157–162

    Article  Google Scholar 

  28. Yan Z, Jing G, Gong N, Li C, Zhou Y, Xie L, Zhang R (2007) Biomacromolecules 8:3597–3601

    Article  CAS  Google Scholar 

  29. Jing G, Yan Z, Li Y, Xie L, Zhang R (2007) Mar Biotechnol 9:650–659

    Article  CAS  Google Scholar 

  30. Urmos J, Sharma SK, Mackenzie FT (1991) Am Mineral 76:641–646

    CAS  Google Scholar 

  31. Lécuyer C, Reynard B, Martineau F (2004) Chem Geol 213:293–305

    Article  Google Scholar 

  32. Weiss IM, Tuross N, Addadi L, Weiner S (2002) J Exp Zool 293:478–491

    Article  CAS  Google Scholar 

  33. Gotliv BA, Addadi L, Weiner S (2003) ChemBioChem 4:522–529

    Article  CAS  Google Scholar 

  34. Withnall R, Chowdhry BZ, Silver J, Edwards HG, de Oliveira LF (2003) Spectrochim Acta Part A 59:2207–2212

    Article  Google Scholar 

  35. Rousseau M, Lopez E, Couté A, Mascarel G, Smith DC, Naslain R, Bourrat X (2005) J Struct Biol 149:149–157

    Article  Google Scholar 

  36. Brink DJ, Van Der Berg NG (2005) J Phys D: Appl Phys 38:338–343

    Article  CAS  Google Scholar 

  37. Zhang G, Xie X, Wang Y (2001) Guang Pu Xue Yu Guang Pu Fen Xi 21:193–196

    CAS  Google Scholar 

  38. Takesue RK, Bacon CR, Thompson JK (2008) Geochim Cosmochim Acta 72:5431–5445

    Article  CAS  Google Scholar 

  39. Klein RT, Lohmann KC, Thayer CW (1996) Geochim Cosmochim Acta 60:4207–4221

    Article  CAS  Google Scholar 

  40. Stecher HA III, Krantz DE, Lord CJ III, Luther GW III, Bock KW (1996) Geochim Cosmochim Acta 60:3445–3456

    Article  CAS  Google Scholar 

  41. Marin F, Luquet G, Marie B, Medakovic D (2008) Curr Top Dev Biol 80:209–76

    Article  CAS  Google Scholar 

  42. Coote GE, Trompetter WJ (1995) Nucl Instr and Meth in Phys Res B 104:333–338

    Article  CAS  Google Scholar 

  43. Kuczumow A (2004) J Alloys Compd 362:71–82

    Article  CAS  Google Scholar 

  44. Lingh U, Mutvei H, Sunde T, Westermark T (1988) Nucl Instr and Meth in Phys Res B 30:388–392

    Article  Google Scholar 

  45. Crenshaw MA, Ristedt H (1976) The histochemical localization of reactive groups in septa nacre from Nautilus pompilius L. In: Watabe N, Wilbur KM (eds) The mechanisms of mineralization in the invertebrates and plants. University of South Carolina Press, USA

    Google Scholar 

  46. Fujikura K, Okoshi K, Naganuma T (2003) Mar Ecol Prog Ser 257:295–301

    Article  Google Scholar 

  47. Labonne M, Morize E, Scolanp R, Lae R, Dabas E, Bohn M (2009) Estuar Coast Shelf Sci 82:673–682

    Article  CAS  Google Scholar 

  48. Diouf K, Panfili J, Labonne M, Aliaume C, Tomas J, Do Chi T (2006) Environ Biol Fishes 77:9–20

    Article  Google Scholar 

  49. Gunn JS, Harrowfield IR, Proctor CH, Thresher RE (1992) J Exp Mar Biol Ecol 158:1–36

    Article  Google Scholar 

  50. Tzeng WN, Severin KP, Wickström H (1997) Mar Ecol Prog Ser 149:73–81

    Article  CAS  Google Scholar 

  51. Otake T, Ishii T, Ishii T, Nakahara M, Nakamura R (1997) Mar Biol 128:565–572

    Article  Google Scholar 

  52. Otake T, Ishii T, Nakahara M, Nakamura R (1994) Mar Ecol Prog Ser 112:189–193

    Article  CAS  Google Scholar 

  53. Markwitz A, Grambole D, Herrmann F, Trompetter WJ, Dioses T, Gauldie RW (2000) Nucl Instr and Meth in Phys Res B 168:109–116

    Article  CAS  Google Scholar 

  54. Elfman M, Limburg KE, Kristiansson P, Svedang H, Westin L, Wickstrom H, Malmqvist K, Pallon J (2000) Nucl Instr and Meth in Phys Res B 161–163:877–881

    Article  Google Scholar 

  55. Radtke RL, Townsend DW, Kinzie RA III, Fey D (1999) J Exp Mar Biol Ecol 238:21–27

    Article  Google Scholar 

  56. Dauphin Y, Cuif JP, Massard P (2006) Chem Geol 231:26–37

    Article  CAS  Google Scholar 

  57. Marin F, Smith M, Isa Y, Muyzer G, Westbroek P (1996) Proc Natl Acad Sci USA 93:1554–1559

    Article  CAS  Google Scholar 

  58. Gaffey SJ, Bronnimann CE (1993) J Sedim Petrol 63:752–754

    Google Scholar 

  59. Capozzi V, Perna G, Gallone A, Biagi PF, Carmone P, Fratello A, Guida G, Zanna P, Cicero R (2005) J Mol Struct 744–747:717–721

    Article  Google Scholar 

  60. Bell SEJ, Bourguignon ESO, Grady AO, Villaumie J, Dennis AC (2002) Raman Spectroscopy 14:17–20

    CAS  Google Scholar 

  61. Schachar RA, Solin SA (1975) Invest Ophthalmol 14:380–396

    CAS  Google Scholar 

  62. Witke K, Götze J, Robler R, Dietrich D, Marx G (2004) Spectrochim Acta Part A 60:2903–2912

    Article  Google Scholar 

  63. Crenshaw MA (1972) Biomineral Res Rep 6:6–11

    CAS  Google Scholar 

  64. Marxen JC, Becker WE (1997) Comp Biochem Physiol 118:23–33

    Google Scholar 

  65. Ravindranath MH, Rajeswari Ravindranath MH (1974) Acta Histochem. 48:26–41

    CAS  Google Scholar 

  66. Goulletquer P (1989) Etude des facteurs environnementaux intervenant sur la production de la palourde japonaise d'élevage Ruditapes philippinarum. Thesis, Université de Bretagne Occidentale, Brest

  67. Paillard C, Maes P, Oubella R (1994) Annu Rev Fish Dis 4:219–240

    Article  Google Scholar 

  68. Paillard C, Maes P, Mazurié J, Claude S, Marhic A, Le Pennec M (1997) Epidemiological survey of the brown ring disease in clams of Atlantic coast: role of temperature in variations of prevalence. Proceedings of the VIIIe Symposium of the International Society for Veterinary Epidemiology and Economics, AEEMA, Paris, France, 14031-14033

Download references

Acknowledgments

We would like to thank Eric Dabas and André Ogor for shell preparations for the WDS microsonde, and Nathalie Guichard for shell matrix extractions and quantifications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Paillard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trinkler, N., Labonne, M., Marin, F. et al. Clam shell repair from the brown ring disease: a study of the organic matrix using Confocal Raman micro-spectrometry and WDS microprobe. Anal Bioanal Chem 396, 555–567 (2010). https://doi.org/10.1007/s00216-009-3114-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3114-0

Keywords

Navigation