Skip to main content
Log in

Current trends in the detection of peroxide-based explosives

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 23 February 2010

Abstract

The increased use of peroxide-based explosives (PBEs) in criminal and terrorist activity has created a demand for continued innovation in the detection of these agents. This review provides an update to a previous 2006 review on the detection of PBEs, with a focus in this report on luminescence and fluorescence methods, infrared and Raman spectroscopy, mass spectrometry, and electrochemical techniques. Newer developments in gas chromatography and high performance liquid chromatography methods are also discussed. One recent trend that is discussed is an emphasis on field measurements through the use of portable instruments or portable assay formats. An increase in the use of infrared spectroscopy and mass spectrometry for PBE analysis is also noted. The analysis of triacetone triperoxide has been the focus in the development of many of these methods, although hexamethylene triperoxide diamine has received increased attention in PBE detection during the last few years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Woffenstein R (1895) Chem Ber 28:2265–2269

    Article  Google Scholar 

  2. McKay G (2002) Kayaku Gakkaishi 63:323–329

    CAS  Google Scholar 

  3. Yeager K (2007) In: Woodfin R (ed) Trace chemical sensing of explosives. Wiley-Interscience, Hoboken

    Google Scholar 

  4. Evans H, Tulleners A, Sanchez B, Rasmussen C (1986) J Forensic Sci 31:1119–1125

    CAS  Google Scholar 

  5. Oxley J, Smith J, Chen H, Cioffi E (2002) Thermochim Acta 338:215–225

    Article  Google Scholar 

  6. Legler L (1881) Chem Ber 14:602–604

    Google Scholar 

  7. Oxley J (2006) In: Schubert H, Kuznetson A (eds) Detection and disposal of improvised devices. Springer, New York

    Google Scholar 

  8. Schulte-Ladbeck R, Vogel M, Karst U (2006) Anal Bioanal Chem 386:559–565

    Article  CAS  Google Scholar 

  9. Meaney M, McGuffin V (2008) Anal Bioanal Chem 391:2557–2576

    Article  CAS  Google Scholar 

  10. Schulte-Ladbeck R, Kolla P, Karst U (2003) Anal Chem 75:731–735

    Article  CAS  Google Scholar 

  11. van Duin A, Zeiri Y, Dubnikova F, Kosloff R, Goddard W (5005) J Am Chem Soc 127:11053–11062

    Article  CAS  Google Scholar 

  12. Dubnikova F, Kosloff R, Almog J et al (2005) J Am Chem Soc 127:1146–1159

    Article  CAS  Google Scholar 

  13. Widmer L, Watson S, Schlatter K, Crowson A (2002) Analyst 127:1627–1632

    Article  CAS  Google Scholar 

  14. Muller D, Levy A, Shelef R, Abramovich-Bar S, Sonenfeld D, Tamiri T (2004) J Forensic Sci 49:935–938

    Article  CAS  Google Scholar 

  15. Oxley J (2008) In: Schubert H, Kuznetson A (eds) Detection of liquid explosives and flammable agents in connection with terrorism. Springer, Dordrecht, pp 27–38

    Chapter  Google Scholar 

  16. Laine D, Roske C, Cheng F (2008) Anal Chim Acta 608:56–60

    Article  CAS  Google Scholar 

  17. Lindley R, Normand E, McCulloch M et al (2008) Proc SPIE 7119:71190K

    Article  CAS  Google Scholar 

  18. Pumera M (2008) Electrophoresis 29:269–273

    Article  CAS  Google Scholar 

  19. Stambouli A, El Bouri A, Bouayoun T, Bellimam M (2004) Forensic Sci Int 146S:S191–S194

    Article  CAS  Google Scholar 

  20. National Research Council of the National Academies (2004) In: Existing and potential standoff explosives detection techniques. The National Academies Press, Washington

  21. Wilson P, Prince B, McEwan M (2006) Anal Chem 78:575–579

    Article  CAS  Google Scholar 

  22. Bellamy A (1999) J Forensic Sci 44:603–608

    CAS  Google Scholar 

  23. Pumera M (2006) Electrophoresis 27:244–256

    Article  CAS  Google Scholar 

  24. Pacheco-Londono L, Primera O, Ramirez M, Ruiz O, Hernandez-Rivera S (2005) Proc SPIE 5778:317–326

    Article  CAS  Google Scholar 

  25. Wang J (2007) Electroanalysis 19:415–423

    Article  CAS  Google Scholar 

  26. Moore D (2007) Sens Imaging 8:9–38

    Article  Google Scholar 

  27. Mills A, Grosshans P, Snadden E (2009) Sens Actuators B 136:458–463

    Article  CAS  Google Scholar 

  28. Apblett A, Kiran B, Malka S, Materer N, Piquette A (2005) Ceram Trans 172:29–35

    Google Scholar 

  29. Sanchez J, Trogler W (2008) J Mater Chem 18:5134–5141

    Article  CAS  Google Scholar 

  30. Germain M, Knapp M (2008) Inorg Chem 47:9748–9750

    Article  CAS  Google Scholar 

  31. Malashikhin S, Finney N (2008) J Am Chem Soc 130:12846–12847

    Article  CAS  Google Scholar 

  32. Sella E, Shabat D (2008) Chem Commun 5701–5703

  33. Wingert P, Mizukami H, Ostafin A (2007) Nanotechnology 18:1–7

    Article  CAS  Google Scholar 

  34. Oxley J, Smith J, Brady J, Dubnikova F, Kosloff R, Zeiri L (2008) Appl Spectrosc 62:906–915

    Article  CAS  Google Scholar 

  35. Pena A, Pacheco-Londono L, Figueroa J, Rivera-Montalvo L, Roman-Velazquez F, Hernandez-Rivera S (2005) Proc SPIE 5778:347358

    Google Scholar 

  36. Hiyoshi R, Nakamura J (2007) Propellants Explos Pyrotech 32:127–134

    Article  CAS  Google Scholar 

  37. Pacheco-Londono L, Primera-Pedrozo O, de la Torre L, Hernandez-Rivera S (2005) Proc SPIE 5816:180–185

    Article  CAS  Google Scholar 

  38. Pacheco-Londono LC, Pena AJ, Primera-Pedrozo OM et al (2004) Proc SPIE 5403:279–287

    Article  CAS  Google Scholar 

  39. Primera OM, Pacheco L, De la Torre LF, Hernandez SP, Chamberlain RT, Lareau RT (2004) In: Abstracts of papers, 227th ACS national meeting, Anaheim, 28 March-1 April, PHYS-405

  40. Primera-Pedrozo OM, Pacheco-Londono LC, De la Torre-Quintana LF, Hernandez-Rivera SP, Chamberlain RT, Lareau RT (2004) Proc SPIE 5403:237–245

    Article  CAS  Google Scholar 

  41. Bauer C, Sharma A, Willer U et al (2008) Appl Phys B 92:327–333

    Article  CAS  Google Scholar 

  42. Hildenbrand J, Herbst J, Wollenstein J, Lambrecht A (2009) Proc SPIE 7222:72220B

    Article  CAS  Google Scholar 

  43. Lambrecht A, Hartwig S, Herbst J, Wollenstein J (2008) Proc SPIE 6901:69010V

    Article  CAS  Google Scholar 

  44. Lindley R, Normand E, Howieson I et al (2007) Proc SPIE 6741:67410P

    Article  CAS  Google Scholar 

  45. Dunayevskiy I, Tsekoun A, Prasanna M, Go R, Patel K (2007) Appl Opt 46:6397–6404

    Article  Google Scholar 

  46. Eckenrode B, Bartick E, Harvey S, Vucelick M, Wright B, Huff R (2001) Forensic Sci Commun 3

  47. Santillan J, Brown C, Jalenak W (2007) Proc SPIE 6540:65400P

    Article  CAS  Google Scholar 

  48. Ahura Scientific (2005) First Defender – breakthrough rugged, handheld chemical identification system available to first responders. http://www.ahuracorp.com/about-ahura/press-releases/pr20050323.php. Accessed 15 June 2009

  49. Ahura Scientific(2008) Ahura Scientific launches FTIR platform with introduction of TruDefender FT. http://www.ahurascientific.com/about-ahura/press-releases/pr20080131.php. Accessed 15 Jun 2009

  50. Stokes R, Smith W, Foulger B, Lewis C (2008) Proc SPIE 7119:71190I

    Article  CAS  Google Scholar 

  51. Mostak P (2008) In: Schubert H, Kuznetson A (eds) Detection of liquid explosives and flammable agents in connection with terrorism. Springer, Dordrecht, pp 15–25

    Chapter  Google Scholar 

  52. Ko H, Chang S, Tsukruk V (2009) ACS NANO 3:181–188

    Article  CAS  Google Scholar 

  53. Sigman M, Clark C, Caiano T, Mullen R (2008) Rapid Commun Mass Spectrom 22:84–90

    Article  CAS  Google Scholar 

  54. Sigman M, Clark C, Painter K et al (2009) Rapid Commun Mass Spectrom 23:349–356

    Article  CAS  Google Scholar 

  55. Armitt D, Zimmermann P, Ellis-Steinborner S (2008) Rapid Commun Mass Spectrom 22:950–958

    Article  CAS  Google Scholar 

  56. Oxley J, Smith J, Chen H (2002) Propellants Explos Pyrotech 27:209–216

    Article  CAS  Google Scholar 

  57. Oxley J, Smith J, Kirschenbaum L, Marimganti S, Vadlamannati S (2008) J Forensic Sci 53:690–693

    Article  CAS  Google Scholar 

  58. Rasanen R, Nousiainen M, Perakorpi K et al (2008) Anal Chim Acta 623:59–65

    Article  CAS  Google Scholar 

  59. Kende A, Lebics F, Eke Z, Torkos K (2008) Microchem Acta 163:335–338

    Article  CAS  Google Scholar 

  60. Sigman M, Clark C, Fidler R, Geiger C, Clausen C (2006) Rapid Commun Mass Spectrom 20:2851–2857

    Article  CAS  Google Scholar 

  61. Cotte-Rodriquez I, Chen H, Cooks R (2006) Chem Commun 953–955

  62. Cotte-Rodriquez I, Cooks R (2006) Chem Commun 2968–2970

  63. Cotte-Rodriquez I, Hernandez-Soto H, Chen H, Cooks R (2008) Anal Chem 80:1512–1519

    Article  CAS  Google Scholar 

  64. Pena-Quevedo A, Cody R, Mina-Camilde N, Ramos M, Hernandez-Rivera S (2007) Proc SPIE 6538:653828

    Article  CAS  Google Scholar 

  65. Mullen C, Huestis D, Coggiola M, Oser H (2006) Int J Mass Spectrom 252:69–72

    Article  CAS  Google Scholar 

  66. Mullen C, Irwin A, Pond B, Huestis D, Coggiola M, Oser H (2006) Anal Chem 78:3807–3814

    Article  CAS  Google Scholar 

  67. Schramm E, Muhlberger F, Mitschke S et al (2008) Appl Spectrosc 62:238–247

    Article  CAS  Google Scholar 

  68. Lu D, Cagan A, Munoz R, Tangkuaram T, Wang J (2006) Analyst 131:1279–1281

    Article  CAS  Google Scholar 

  69. Karyakin A, Gorton L (2000) Anal Chem 72:1720–1723

    Article  CAS  Google Scholar 

  70. Munoz R, Lu D, Cagan A, Wang J (2007) Analyst 132:560–565

    Article  CAS  Google Scholar 

  71. Laine D, Cheng F (2009) Microchem J 91:125–128

    Article  CAS  Google Scholar 

  72. Bohrer F, Colesniuc C, Park J, Schuller I, Kummel A, Trogler W (2008) J Am Chem Soc 130:3712–3713

    Article  CAS  Google Scholar 

  73. Schulte-Ladbeck R, Edelmann A, Quintas G, Lendl B, Karst U (2006) Anal Chem 78:8150–8155

    Article  CAS  Google Scholar 

  74. Staples E (2004) In: Gardner J, Yinon J (eds) Electronic noses & sensors for the detection of explosives. Kluwer, Dordrecht

    Google Scholar 

  75. Zuck A, Greenblatt J, Zifman A et al (2008) J Energ Mater 26:163–180

    Article  CAS  Google Scholar 

  76. Oxley J, Smith J, Luo W (2007) Propellants Explos Pyrotech, in press

Download references

Acknowledgement

This work was supported by DARPA grant N66001-08-1-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Hage.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00216-010-3480-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burks, R.M., Hage, D.S. Current trends in the detection of peroxide-based explosives. Anal Bioanal Chem 395, 301–313 (2009). https://doi.org/10.1007/s00216-009-2968-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2968-5

Keywords

Navigation