, Volume 394, Issue 8, pp 2231-2239
Date: 04 Jul 2009

Determination of dimethyl fumarate and other potential allergens in desiccant and antimould sachets

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

A method for the determination of dimethyl fumarate (DMF), benzothiazole (BT) and tert-butylphenol (TBP) in desiccant and antimould agents employed for protecting consumer products from humidity and mould has been developed. The method is based on ultrasound-assisted extraction (UAE) followed by GC-MS analysis. Parameters that could affect the extraction of the compounds have been optimised using a multivariate approach. In the final conditions, the extraction is performed using only 0.5 or 1 mL ethyl acetate and applying ultrasound energy for 5 min. Simultaneous extractions could also be carried out in 5 min without losing efficiency. The method was validated showing good linearity (R 2 >0.995). Both intra- and inter-day precisions were studied at several concentration levels, being satisfactory in all cases (RSD <10%). Recovery was evaluated in four real desiccant samples at different compound concentrations, ranging between 87% and 109%. Limits of detection and quantification were in the low nanogramme per gramme level, thus allowing the determination of DMF at concentrations well below the limit established by the recent EU Directive (0.1 μg/g). The proposed procedure was applied to the determination of the target compounds in several desiccant and antimould samples. Although most of them were simply labelled as “silica gel”, more than 70% of the tested samples contained high amounts of DMF, many of them at the high microgram per gramme level. Many samples also showed the presence of the other two potential allergens. These results demonstrate that the content of the “desiccant” sachets and tablets in consumer products does not usually belong with the label of the desiccant, and hence, the high risk of exposition to the powerful allergen DMF and other potentially harmful chemicals through consumer goods should be a matter of concern.