Skip to main content
Log in

Surface-enhanced Raman spectroscopy: substrate-related issues

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

After over 30 years of development, surface-enhanced Raman spectroscopy (SERS) is now facing a very important stage in its history. The explosive development of nanoscience and nanotechnology has assisted the rapid development of SERS, especially during the last 5 years. Further development of surface-enhanced Raman spectroscopy is mainly limited by the reproducible preparation of clean and highly surface enhanced Raman scattering (SERS) active substrates. This review deals with some substrate-related issues. Various methods will be introduced for preparing SERS substrates of Ag and Au for analytical purposes, from SERS substrates prepared by electrochemical or vacuum methods, to well-dispersed Au or Ag nanoparticle sols, to nanoparticle thin film substrates, and finally to ordered nanostructured substrates. Emphasis is placed on the analysis of the advantages and weaknesses of different methods in preparing SERS substrates. Closely related to the application of SERS in the analysis of trace sample and unknown systems, the existing cleaning methods for SERS substrates are analyzed and a combined chemical adsorption and electrochemical oxidation method is proposed to eliminate the interference of contaminants. A defocusing method is proposed to deal with the laser-induced sample decomposition problem frequently met in SERS measurement to obtain strong signals. The existing methods to estimate the surface enhancement factor, a criterion to characterize the SERS activity of a substrate, are analyzed and some guidelines are proposed to obtain the correct enhancement factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pettinger B (1992) In: Lipkowski J, Ross PN (eds) Adsorption of molecules at metal electrodes. VCH, New York, pp 285–345

    Google Scholar 

  2. McCreery RL (2000) Raman spectroscopy for chemical analysis. Wiley-Interscience, New York

    Book  Google Scholar 

  3. Smith E, Dent G (2005) Modern Raman spectroscopy. Wiley, New York

    Google Scholar 

  4. Hartschuh A (2008) Angew Chem Int Ed 47:8178–8191

    Article  CAS  Google Scholar 

  5. Fleischmann M, Hendra PJ, Mcquillan AJ (1974) Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  6. Jeanmaire DL, Van Duyne RP (1977) J Electroanal Chem 84:1–20

    Article  CAS  Google Scholar 

  7. Albrecht MG, Creighton JA (1977) J Am Chem Soc 99:5215–5217

    Article  CAS  Google Scholar 

  8. Tian ZQ (ed) (2005) Journal Raman Spectrosc 36:465–747

    Google Scholar 

  9. Brown R, Milton MJT, Smith WE (eds) (2006) Faraday Discuss 132:1–340

  10. Graham D, Goodcare R (eds) (2008) Chem Soc Rev 37:873–1076

  11. Furtak TE, Chang RK (1982) Surface enhanced Raman scattering. Plenum, New York

    Google Scholar 

  12. Otto A, Mrozek I, Grabhorn H, Akemann W (1992) J Phys Condens Matter 4:1143–1212

    Article  CAS  Google Scholar 

  13. Moskovits M (2005) J Raman Spectrosc 36:485–496

    Article  CAS  Google Scholar 

  14. Tian ZQ (2006) Faraday Discuss 132:227–247

    Article  CAS  Google Scholar 

  15. Ding SY, Wu DY, Yang ZL, Ren B, Xu X, Tian ZQ (2008) Chem J Chin Univ Chin 29:2569–2581

    CAS  Google Scholar 

  16. Gersten JI, Birke RL, Lombardi JR (1979) Phys Rev Lett 43:147–150

    Article  CAS  Google Scholar 

  17. Burstein E, Chen YJ, Chen CY, Lundquist S, Tosatti E (1979) Solid State Commun 29:567–570

    Article  CAS  Google Scholar 

  18. Otto A (1984) In: Cardona M, Guntherodt G (eds) Light scattering in solids. Springer, Berlin, pp 289–418

    Google Scholar 

  19. Moskovits M (1985) Rev Mod Phys 57:783–828

    Article  CAS  Google Scholar 

  20. Gersten JI (1980) J Chem Phys 73:3023–3037

    Article  CAS  Google Scholar 

  21. Hulteen JC, Van Duynea RP (1995) J Vac Sci Technol A 13:1553–1558

    Article  Google Scholar 

  22. Willets KA, Van Duyne RP (2007) Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  23. Natan MJ (2006) Faraday Discuss 132:321–328

    Article  CAS  Google Scholar 

  24. Ackermann KR, Henkel T, Popp J (2007) Chemphyschem 8:2665–2670

    Article  CAS  Google Scholar 

  25. Bell SEJ, Sirimuthu NMS (2008) Chem Soc Rev 37:1012–1024

    Article  CAS  Google Scholar 

  26. Jarvis RM, Johnson HE, Olembe E, Panneerselvam A, Malik MA, Afzaal M, O’Brien P, Goodacre R (2008) Analyst 133:1449–1452

    Article  CAS  Google Scholar 

  27. Shanmukh S, Jones L, Driskell J, Zhao YP, Dluhy R, Tripp RA (2006) Nano Lett 6:2630–2636

    Article  CAS  Google Scholar 

  28. Kneipp J, Kneipp H, Kneipp K (2008) Chem Soc Rev 37:1052–1060

    Article  CAS  Google Scholar 

  29. Mulvihill M, Tao A, Benjauthrit K, Arnold J, Yang P (2008) Angew Chem Int Ed 47:6456–6460

    Article  CAS  Google Scholar 

  30. Evanoff DD, Heckel J, Caldwell TP, Christensen KA, Chumanov G (2006) J Am Chem Soc 128:12618–12619

    Article  CAS  Google Scholar 

  31. Jarvis RM, Law N, Shadi LT, O’Brien P, Lloyd JR, Goodacre R (2008) Anal Chem 80:6741–6746

    Article  CAS  Google Scholar 

  32. Qian XM, Zhou X, Nie SM (2008) J Am Chem Soc 130:14934–14935

    Article  Google Scholar 

  33. Tian ZQ, Ren B, Wu DY (2002) J Phys Chem B 106:9463–9483

    Article  CAS  Google Scholar 

  34. Tian ZQ, Ren B (2003) In: Bard AJ, Stratmann M, Unwin PR (eds) Encyclopedia of electrochemistry, vol 3. Wiley-VCH, New York, pp 572–659

    Google Scholar 

  35. Gao P, Weaver MJ (1985) J Phys Chem 89:5040–5070

    Article  CAS  Google Scholar 

  36. Ren B, Liu GK, Lian XB, Yang ZL, Tian ZQ (2007) Anal Bioanal Chem 388:29–45

    Article  CAS  Google Scholar 

  37. Fleischmann M, Tian ZQ, Li LJ (1987) J Electroanal Chem 217:397–410

    Article  CAS  Google Scholar 

  38. Wing L, Leung H, Weaver MJ (1987) J Am Chem Soc 109:5113–5119

    Article  Google Scholar 

  39. Weaver MJ, Zou SZ, Chan HYH (2000) Anal Chem 72:38A–47A

    Article  CAS  Google Scholar 

  40. Rowe JE, Shank CW, Zwemer DA, Murray CA (1980) Phys Rev Lett 44:1770–1773

    Article  CAS  Google Scholar 

  41. Moskovits M (1983) Chem Phys Lett 98:498–502

    Article  CAS  Google Scholar 

  42. Knight DS, Weimer R, Pilione L, White WB (1990) Appl Phys Lett 56:1320–1322

    Article  CAS  Google Scholar 

  43. Eickmans J, Otto A, Goldmann A (1986) Surf Sci 171:415–441

    Article  CAS  Google Scholar 

  44. Taylor CE, Pemberton JE, Goodman GG, Schoenfisch MH (1999) Appl Spectrosc 53:1212–1221

    Article  CAS  Google Scholar 

  45. Pileni MP (2007) J Phys Chem C 111:9019–9038

    Article  CAS  Google Scholar 

  46. Frens G (1973) Nat Phys Sci 241:20–22

    CAS  Google Scholar 

  47. Creighton JA, Blatchford CG, Albrecht MG (1979) J Chem Soc Faraday Trans 75:790–798

    Article  CAS  Google Scholar 

  48. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Science 272:1924–1925

    Article  CAS  Google Scholar 

  49. Sun YG, Xia YN (2002) Science 298:2176–2179

    Article  CAS  Google Scholar 

  50. Sau TK, Murphy CJ (2004) J Am Chem Soc 126:8648–8649

    Article  CAS  Google Scholar 

  51. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  52. Nie SM, Emory SR (1997) Science 275:1102–1106

    Article  CAS  Google Scholar 

  53. Wang DS, Chew H, Kerker M (1980) Appl Opt 19:2256–2257

    Article  CAS  Google Scholar 

  54. Kerker M (1987) J Colloid Interface Sci 118:1

    Article  Google Scholar 

  55. Emery SR, Haskins WE, Nie SM (1998) J Am Chem Soc 120:8009–8010

    Article  Google Scholar 

  56. Krug JT, Wang GD, Emory SR, Nie SM (1999) J Am Chem Soc 121:9208–9214

    Article  CAS  Google Scholar 

  57. Gersten JI (1980) J Chem Phys 72:5779–5780

    Article  CAS  Google Scholar 

  58. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  59. Orendorff CJ, Gole A, Sau TK, Murphy CJ (2005) Anal Chem 77:3261–3266

    Article  CAS  Google Scholar 

  60. Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2007) Nano Lett 7:1591–1597

    Article  CAS  Google Scholar 

  61. Link S, Mohamed MB, El-Sayed MA (1999) J Phys Chem B 103:3073–3077

    Article  CAS  Google Scholar 

  62. Parker WL, Hexter RM, Siedle AR (1984) Chem Phys Lett 107:96–98

    Article  CAS  Google Scholar 

  63. Tian ZQ, Ren B, Mao BW (1997) J Phys Chem B 101:1338–1346

    Article  CAS  Google Scholar 

  64. Srnova I, Vlckova B, Baumruk V (1997) J Mol Struct 410–411:201–203

    Article  Google Scholar 

  65. Guo L, Huang QJ, Li XY, Yang SH (2001) Phys Chem Chem Phys 3:1661–1665

    Article  CAS  Google Scholar 

  66. Gomez R, Perez JM, Solla-Gullon J, Montiel V, Aldaz A (2004) J Phys Chem B 108:9943–9949

    Article  CAS  Google Scholar 

  67. Kim NH, Kim K (2004) Chem Phys Lett 393:478–482

    Article  CAS  Google Scholar 

  68. Cui L, Wang A, Wu DY, Ren B, Tian ZQ (2008) J Phys Chem C 112:17618–17624

    Article  CAS  Google Scholar 

  69. Xiong YJ, McLellan JM, Chen JY, Yin YD, Li ZY, Xia YN (2005) J Am Chem Soc 127:17118–17127

    Article  CAS  Google Scholar 

  70. Tian ZQ, Ren B, Li JF, Yang ZL (2007) Chem Commun 3514–3534

  71. Tian ZQ, Yang ZL, Ren B, Li JF, Zhang Y, Lin XF, Hu JW, Wu DY (2006) Faraday Discuss 132:159–170

    Article  CAS  Google Scholar 

  72. Wu DY, Li JF, Ren B, Tian ZQ (2008) Chem Soc Rev 37:1025–1041

    Article  CAS  Google Scholar 

  73. Kneipp K, Kneipp H, Kartha VB, Manoharan R, Deinum G, Itzkan I, Dasari RR, Feld MS (1998) Phys Rev E 57:R6281–R6284

    Article  CAS  Google Scholar 

  74. Kneipp K, Kneipp H, Manoharan R, Hanlon EB, Itzkan I, Dasari RR, Feld MS (1998) Appl Spectrosc 52:1493–1497

    Article  CAS  Google Scholar 

  75. Keating CD, Kovaleski KM, Natan MJ (1998) J Phys Chem B 102:9404–9413

    Article  CAS  Google Scholar 

  76. Bell SEJ, Sirimuthu NMS (2004) Analyst 129:1032–1036

    Article  CAS  Google Scholar 

  77. Mulvaney SP, Musick MD, Keating CD, Natan MJ (2003) Langmuir 19:4784–4790

    Article  CAS  Google Scholar 

  78. Qian XM, Nie SM (2008) Chem Soc Rev 37:912–920

    Article  CAS  Google Scholar 

  79. McCabe AF, Eliasson C, Prasath RA, Hernandez-Santana A, Stevenson L, Apple I, Cormack PAG, Graham D, Smith WE, Corish P, Lipscomb SJ, Holland ER, Prince PD (2006) Faraday Discuss 132:303–308

    Article  CAS  Google Scholar 

  80. Cui Y, Ren B, Yao JL, Gu RA, Tian ZQ (2006) J Phys Chem B 110:4002–4006

    Article  CAS  Google Scholar 

  81. Kim K, Lee HB, Shin KS (2008) Langmuir 24:5893–5898

    Article  CAS  Google Scholar 

  82. Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, Hommer MB, Jackson MA, Smith PC, Walter DG, Natan MJ (1995) Science 267:1627–1632

    Article  Google Scholar 

  83. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Anal Chem 67:735–743

    Article  CAS  Google Scholar 

  84. Grabar KC, Smith PC, Musick MD, Davis JA, Walter DG, Jackson MA, Guthrie AP, Natan MJ (1996) J Am Chem Soc 118:1148–1153

    Article  CAS  Google Scholar 

  85. Brown KR, Natan MJ (1998) Langmuir 14:726–728

    Article  CAS  Google Scholar 

  86. Gao MX, Lin XM, Ren B (2008) Chem J Chin Univ Chin 29:959–962

    CAS  Google Scholar 

  87. Wang H, Levin CS, Halas NJ (2005) J Am Chem Soc 127:14992–14993

    Article  CAS  Google Scholar 

  88. Roberts G (1990) Langmuir Blodgett films. Plenum, New York

    Google Scholar 

  89. Tao AR, Huang JX, Yang PD (2008) Acc Chem Res 41:1662–1673

    Article  CAS  Google Scholar 

  90. Tao A, Kim F, Hess C, Goldberger J, He RR, Sun YG, Xia YN, Yang PD (2003) Nano Lett 3:1229–1233

    Article  CAS  Google Scholar 

  91. Tao A, Sinsermsuksakul P, Yang P (2007) Nat Nanotechnol 2:435–440

    Article  CAS  Google Scholar 

  92. Menon VP, Martin CR (1995) Anal Chem 67:1920–1928

    Article  CAS  Google Scholar 

  93. Yao JL, Tang J, Wu DY, Sun DM, Xue KH, Ren B, Mao BW, Tian ZQ (2002) Surf Sci 514:108–116

    Article  CAS  Google Scholar 

  94. Zhai XF, Mu C, Xu DS, Tong LM, Zhu T, Du WM (2008) Spectrosc Spectral Anal 28:2329–2332

    CAS  Google Scholar 

  95. Lee SJ, Guan ZQ, Xu HX, Moskovits M (2007) J Phys Chem C 111:17985–17988

    Article  CAS  Google Scholar 

  96. Wang HH, Liu CY, Wu SB, Liu NW, Peng CY, Chan TH, Hsu CF, Wang JK, Wang YL (2006) Adv Mater 18:491–495

    Article  CAS  Google Scholar 

  97. Mahajan S, Abdelsalam M, Suguwara Y, Cintra S, Russell A, Baumberg J, Bartlett P (2007) Phys Chem Chem Phys 9:104–109

    Article  CAS  Google Scholar 

  98. Haynes CL, Van Duyne RP (2003) J Phys Chem B 107:7426–7433

    Article  CAS  Google Scholar 

  99. Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, Young MA, Zhang XY, Van Duyne RP (2006) Faraday Discuss 132:9–26

    Article  CAS  Google Scholar 

  100. Gunnarsson L, Bjerneld EJ, Xu H, Petronis S, Kasemo B, Kall M (2001) Appl Phys Lett 78:802–804

    Article  CAS  Google Scholar 

  101. Marquestaut N, Martin A, Talaga D, Servant L, Ravaine S, Reculusa S, Bassani DM, Gillies E, Lagugne-Labarthet F (2008) Langmuir 24:11313–11321

    Article  CAS  Google Scholar 

  102. Huebner U, Boucher R, Schneidewind H, Cialla D, Popp J (2008) Microelectron Eng 85:1792–1794

    Article  CAS  Google Scholar 

  103. Alvarez-Puebla R, Cui B, Bravo-Vasquez JP, Veres T, Fenniri H (2007) J Phys Chem C 111:6720–6723

    Article  CAS  Google Scholar 

  104. Li ZY, Tong WM, Stickle WF, Neiman DL, Williams RS, Hunter LL, Talin AA, Li D, Brueck SRJ (2007) Langmuir 23:5135–5138

    Article  CAS  Google Scholar 

  105. Zou SZ, Chen YX, Mao BW, Ren B, Tian ZQ (1997) J Electroanal Chem 424:19–24

    Article  CAS  Google Scholar 

  106. Norrod KL, Rowlen KL (1998) Anal Chem 70:4218–4221

    Article  CAS  Google Scholar 

  107. Norrod KL, Rowlen KL (1998) J Am Chem Soc 120:2656–2657

    Article  CAS  Google Scholar 

  108. Taylor CE, Garvey SD, Pemberton JE (1996) Anal Chem 68:2401–2408

    Article  CAS  Google Scholar 

  109. Bewicka A, Thomasa B (1975) J Electroanal Chem 65:911–931

    Article  Google Scholar 

  110. Otto A (1978) Surf Sci 75:L392–L396

    Article  CAS  Google Scholar 

  111. Cai ZP, Wang B, He TC, Zhang L, Mo YJ (2007) J Light Scattering 19:124–127

    Google Scholar 

  112. Li MD, Cui Y, Gao MX, Luo J, Ren B, Tian ZQ (2008) Anal Chem 80:5118–5125

    Article  CAS  Google Scholar 

  113. Meinhart CD, Wereley ST (2003) Meas Sci Technol 14:1047–1053

    Article  CAS  Google Scholar 

  114. Mahoney MR, Cooney RP (1983) J Phys Chem 87:5314–5319

    Article  Google Scholar 

  115. Ramsey J, Ranganathan S, McCreery RL, Zhao J (2001) Appl Spectrosc 55:767–773

    Article  CAS  Google Scholar 

  116. Vess TM, Wertz DW (1991) J Electroanal Chem 313:81–94

    Article  CAS  Google Scholar 

  117. Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) J Phys Chem C 111:13794–13803

    Article  CAS  Google Scholar 

  118. Cai WB, Ren B, Li XQ, She CX, Liu FM, Cai XW, Tian ZQ (1998) Surf Sci 406:9–22

    Article  CAS  Google Scholar 

  119. Felidj N, Aubard J, Levi G, Krenn JR, Salerno M, Schider G, Lamprecht B, Leitner A, Aussenegg FR (2002) Phys Rev B 65:9

    Article  CAS  Google Scholar 

  120. McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) J Phys Chem B 109:11279–11285

    Article  CAS  Google Scholar 

  121. Hildebrandt P, Stockburger M (1984) J Phys Chem 88:5935–5944

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program nos. 2009CB930703, 2007CB935603 and 2007DFC40440), the Natural Science Foundation of China (20673086, 20620130427, 20825313, and 20827003), and the Ministry of Education of China (NCET-05-0564).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, XM., Cui, Y., Xu, YH. et al. Surface-enhanced Raman spectroscopy: substrate-related issues. Anal Bioanal Chem 394, 1729–1745 (2009). https://doi.org/10.1007/s00216-009-2761-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2761-5

Keywords

Navigation