Skip to main content
Log in

Redox cycling in nanofluidic channels using interdigitated electrodes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Amperometric detection is ideally suited for integration into micro- and nanofluidic systems as it directly yields an electrical signal and does not necessitate optical components. However, the range of systems to which it can be applied is constrained by the limited sensitivity and specificity of the method. These limitations can be partially alleviated through the use of redox cycling, in which multiple electrodes are employed to repeatedly reduce and oxidize analyte molecules and thereby amplify the detected signal. We have developed an interdigitated electrode device that is encased in a nanofluidic channel to provide a hundred-fold amplification of the amperometric signal from paracetamol. Due to the nanochannel design, the sensor is resistant to interference from molecules undergoing irreversible redox reactions. We demonstrate this selectivity by detecting paracetamol in the presence of excess ascorbic acid.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The factor of 2 appears because in this procedure, I ref ∼ I 1/2 for a device with a symmetric IDE geometry. This is because 50% of the redox species is in the oxidized state, while the other 50% is in the reduced state in the region during the measurement of I ref while they are completely reduced or oxidized during the measurement of I 1.

References

  1. Chen ZL, Hayashi K, Iwasaki Y, Kurita R, Niwa O, Sunaawa K (2005) Electroanal 17:231–238

    Article  CAS  Google Scholar 

  2. Lisdat F, Wollenberger U, Makower A, Hortnagl H, Pfeiffer D, Scheller FW (1997) Biosens Bioelectron 12:1199–1211

    Article  CAS  Google Scholar 

  3. Ciszewski A, Milczarek G (1999) Anal Chem 71:1055–1061

    Article  CAS  Google Scholar 

  4. Malem F, Mandler D (1993) Anal Chem 65:37–41

    Article  CAS  Google Scholar 

  5. Raoof JB, Ojani R, Rashid-Nadimi S (2005) Electrochim Acta 50:4694–4698

    Article  CAS  Google Scholar 

  6. Selvaraju T, Ramaraj R (2003) Electrochem Commun 5:667–672

    Article  CAS  Google Scholar 

  7. Cvacka J, Quaiserova V, Park J, Show Y, Muck A, Swain GM (2003) Anal Chem 75:2678–2687

    Article  CAS  Google Scholar 

  8. Martin RS, Gawron AJ, Lunte SM, Henry CS (2000) Anal Chem 72:3196–3202

    Article  CAS  Google Scholar 

  9. Shin DC, Sarada BV, Tryk DA, Fujishima A (2003) Anal Chem 75:530–534

    Article  CAS  Google Scholar 

  10. Abgrall P, Nguyen NT (2008) Anal Chem 80:2326–2341

    Article  CAS  Google Scholar 

  11. Massari AM, Gurney RW, Schwartz CP, Nguyen ST, Hupp JT (2004) Langmuir 20:4422–4429

    Article  CAS  Google Scholar 

  12. Krapf D, Quinn BM, Wu MY, Zandbergen HW, Dekker C, Lemay SG (2006) Nano Lett 6:2531–2535

    Article  CAS  Google Scholar 

  13. Schoch RB, Cheow LF, Han J (2007) Nano Lett 7:3895–3900

    Article  CAS  Google Scholar 

  14. Garcia AL, Ista LK, Petsev DN, O'Brien MJ, Bisong P, Mammoli AA, Brueck SRJ, Lopez GP (2005) Lab Chip 5:1271–1276

    Article  CAS  Google Scholar 

  15. White RJ, White HS (2008) Langmuir 24:2850–2855

    Article  CAS  Google Scholar 

  16. Sun P, Mirkin MV (2008) J Am Chem Soc 130:8241–8250

    Article  CAS  Google Scholar 

  17. Georganopoulou DG, Mirkin MV, Murray RW (2004) Nano Lett 4:1763–1767

    Article  CAS  Google Scholar 

  18. Fan FRF, Bard AJ (1995) Science 267:871–874

    Article  CAS  Google Scholar 

  19. Brown FO, Lowry JP (2003) Analyst 128:700–705

    Article  CAS  Google Scholar 

  20. Gonon F, Buda M, Cespuglio R, Jouvet M, Pujol JF (1980) Nature 286:902–904

    Article  CAS  Google Scholar 

  21. Heien M, Khan AS, Ariansen JL, Cheer JF, Phillips PEM, Wassum KM, Wightman RM (2005) Proc Natl Acad Sci U S A 102:10023–10028

    Article  CAS  Google Scholar 

  22. Rice ME, Oke AF, Bradberry CW, Adams RN (1985) Brain Res 340:151–155

    Article  CAS  Google Scholar 

  23. Stamford JA (1985) Brain Res Rev 10:119–135

    Article  CAS  Google Scholar 

  24. Rubinstein I (1995) Physical electrochemistry: principles, methods, and applications. Marcel Dekker, New York

    Google Scholar 

  25. Montenegro MI, Queiros MA, Daschbach JL, eds. (1991) Microelectrodes: theory and Applications. Kluwer, Dordrecht, the Netherlands

  26. Sanderson DG, Anderson LB (1985) Anal Chem 57:2388–2393

    Article  CAS  Google Scholar 

  27. Chidsey CE, Feldman BJ, Lundgren C, Murray RW (1986) Anal Chem 58:601–607

    Article  CAS  Google Scholar 

  28. Niwa O, Morita M, Tabei H (1990) Anal Chem 62:447–452

    Article  CAS  Google Scholar 

  29. Sheppard NF, Tucker RC, Wu C (1993) Anal Chem 65:1199–1202

    Article  CAS  Google Scholar 

  30. Timmer B, Sparreboom W, Olthuis W, Bergveld P, van den Berg A (2002) Lab Chip 2:121–124

    Article  CAS  Google Scholar 

  31. Jaffrezic-Renault N, Dzyadevych SV (2008) Sensors 8:2569–2588

    Article  Google Scholar 

  32. Niwa O, Morita M, Tabei H (1991) Electroanal 3:163–168

    Article  CAS  Google Scholar 

  33. Vandaveer WR IV, Woodward DJ, Fritsch I (2003) Electrochim Acta 48:3341–3348

    Article  CAS  Google Scholar 

  34. Nebling E, Grunwald T, Albers J, Schafer P, Hintsche R (2004) Anal Chem 76:689–696

    Article  CAS  Google Scholar 

  35. Male KB, Luong JHT (2003) J Chromatogr A 1003:167–178

    Article  CAS  Google Scholar 

  36. Liu Z, Niwa O, Kurita R, Horiuchi T (2000) Anal Chem 72:1315–1321

    Article  CAS  Google Scholar 

  37. Ueno K, Hayashida M, Ye J-Y, Misawa H (2005) Electrochem Commun 7:161–165

    Article  CAS  Google Scholar 

  38. Hayashi K, Takahashi J, Horiuchi T, Iwasaki Y, Haga T (2008) J Electrochem Soc 155:J240–J243

    Article  CAS  Google Scholar 

  39. Bange A, Tu J, Zhu XS, Ahn C, Halsall HB, Heineman WR (2007) Electroanal 19:2202–2207

    Article  CAS  Google Scholar 

  40. Zevenbergen MAG, Krapf D, Zuiddam MR, Lemay SG (2007) Nano Lett 7:384–388

    Article  CAS  Google Scholar 

  41. Strutwolf J, Williams DE (2005) Electroanal 17:169–177

    Article  CAS  Google Scholar 

  42. Yang XL, Zhang GG (2007) Sens Actuat B-Chem 126:624–631

    Article  Google Scholar 

  43. Min JH, Baeumner AJ (2004) Electroanal 16:724–729

    Article  CAS  Google Scholar 

  44. Odijk M, Olthuis W, Dam VAT, van den Berg A (2008) Electroanal 20:463–468

    Article  CAS  Google Scholar 

  45. Dam VAT, Olthuis W, Berg AVD (2007) Analyst 132:365–370

    Article  CAS  Google Scholar 

  46. Wolfrum B, Zevenbergen M, Lemay S (2008) Anal Chem 80:972–977

    Article  CAS  Google Scholar 

  47. Zevenbergen MAG, Wolfrum B, Goluch ED, Lemay SG. Unpublished results

  48. Aoki A, Matsue T, Uchida I (1990) Anal Chem 62:2206–2210

    Article  CAS  Google Scholar 

  49. Sparreboom W, Eijkel JCT, Bomer J, Berg AVD (2008) Lab Chip 8:402–407

    Article  CAS  Google Scholar 

  50. Sotomayor MDPT, Sigoli A, Lanza MRV, Tanaka AA, Kubota LT (2008) J Brazil Chem Soc 19:734–743

    CAS  Google Scholar 

  51. Whelpton R, Fernandes K, Wilkinson KA, Goldhill DR (1993) Biomed Chromatogr 7:90–93

    Article  CAS  Google Scholar 

  52. Davidson FD (2004) Ann Clin Biochem 41:316–320

    Article  CAS  Google Scholar 

  53. Hayashi K, Iwasaki Y, Kurita R, Sunagawa K, Niwa O (2003) Electrochem Commun 5:1037–1042

    Article  CAS  Google Scholar 

  54. Paixao T, Richter EM, Brito-Neto JGA, Bertotti M (2006) Electrochem Commun 8:9–14

    Article  CAS  Google Scholar 

  55. Perone SP, Kretlow WJ (1966) Anal Chem 38:1760–1763

    Article  CAS  Google Scholar 

  56. Wehmeyer KR, Wightman RM (1985) Anal Chem 57:1989–1993

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the NanoNed and NWO. Edgar Goluch would like to thank the U.S. National Science Foundation for support through IRFP Grant Number 0754396. Bernhard Wolfrum was funded by the DFG. We acknowledge Cees Dekker for general support and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge G. Lemay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goluch, E.D., Wolfrum, B., Singh, P.S. et al. Redox cycling in nanofluidic channels using interdigitated electrodes. Anal Bioanal Chem 394, 447–456 (2009). https://doi.org/10.1007/s00216-008-2575-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2575-x

Keywords

Navigation