Skip to main content
Log in

Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bacterial intraspecies and interspecies communication in the rhizosphere is mediated by diffusible signal molecules. Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) as autoinducers in the quorum sensing response. While bacterial signalling is well described, the fate of AHLs in contact with plants is much less known. Thus, adsorption, uptake and translocation of N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL) and N-decanoyl-homoserine lactone (C10-HSL) were studied in axenic systems with barley (Hordeum vulgare L.) and the legume yam bean (Pachyrhizus erosus (L.) Urban) as model plants using ultra-performance liquid chromatography (UPLC), Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and tritium-labelled AHLs. Decreases in AHL concentration due to abiotic adsorption or degradation were tolerable under the experimental conditions. The presence of plants enhanced AHL decline in media depending on the compounds’ lipophilicity, whereby the legume caused stronger AHL decrease than barley. All tested AHLs were traceable in root extracts of both plants. While all AHLs except C10-HSL were detectable in barley shoots, only C6-HSL was found in shoots of yam bean. Furthermore, tritium-labelled AHLs were used to determine short-term uptake kinetics. Chiral separation by GC-MS revealed that both plants discriminated D-AHL stereoisomers to different extents. These results indicate substantial differences in uptake and degradation of different AHLs in the plants tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nealson KH, Platt T, Hastings JW (1970) J Bacteriol 104/1:313–322

    Google Scholar 

  2. Fuqua WC, Winans SC, Greenberg EP (1994) J Bacteriol 176:269–275

    CAS  Google Scholar 

  3. Pearson JP, Van Delden C, Iglewski BH (1999) J Bacteriol 181:1203–1210

    CAS  Google Scholar 

  4. March JC, Bentley WE (2004) Curr Opin Biotechnol 15:495–502

    Article  CAS  Google Scholar 

  5. Loh J, Pierson EA, Pierson LS, Stacey G, Chatterjee A (2002) Curr Opin Plant Biol 5

  6. Brelles-Mariño G, Bedmar EJ (2001) J Biotechnol 91:197–209

    Article  Google Scholar 

  7. Whitehead NA, Barnard AML, Slater H, Simpson NJL, Salmond GPC (2001) FEMS Microbiol Rev 25:365–404

    Article  CAS  Google Scholar 

  8. Hense BA, Kuttler C, Müller J, Rothballer M, Hartmann A, Kreft J-U (2007) Nat Microbiol Rev 5:230–239

    Article  CAS  Google Scholar 

  9. Fekete A, Frommberger M, Rothballer M, Li X, Englmann M, Fekete J, Hartmann A, Eberl L, Schmitt-Kopplin P (2007) Anal Bioanal Chem 387:455–467

    Article  CAS  Google Scholar 

  10. Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anollés G, Rolfe BG, Bauer WD (2003) PNAS 100:1444–1449

    Article  CAS  Google Scholar 

  11. Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Breusegem Fv, Eberl L, Hartmann A, Langebartels C (2006) Plant Cell Environ 29:909–918

    Article  CAS  Google Scholar 

  12. Rasmussen TB, Manefield M, Andersen JB, Eberl L, Anthoni U, Christophersen C, Steinberg P, Kjelleberg S, Givskov M (2000) Microbiology 146:3237–3244

    CAS  Google Scholar 

  13. Gao M, Teplitski M, Robinson JB, Bauer WD (2003) MPMI 16/9:827–834

    Google Scholar 

  14. Wisniewski-Dyé F, Downie JA (2002) Antonie van Leeuwenhoek 81:397–407

    Article  Google Scholar 

  15. Miller MB, Bassler BL (2001) Rev Microbiol 55:165–199

    Article  CAS  Google Scholar 

  16. Conway B, Greenberg EP (2002) J Bacteriol 184/4:1187–1191

    Article  Google Scholar 

  17. Rothballer MH (2003) In situ Lokalisierung, PGPR-Effekt und Regulation des ipdC-Gens der Azospirillum brasilense Stämme Sp7 und Sp245 bei verschiedenen Weizensorten, sowie endophytische Kolonisierung durch Herbaspirillum sp. N3. PhD thesis:Ludwig-Maximilian-University Munich. http://edoc.ub.uni-muenchen.de/archive/00001795/00001701/Rothballer_Michael.pdf

  18. Li X, Fekete A, Englmann M, Götz C, Rothballer M, Frommberger M, Buddrus K, Cai C, Schröder P, Hartmann A, Chen G, Schmitt-Kopplin P (2006) J Chromatogr A 1134:186–193

    Article  CAS  Google Scholar 

  19. Eberhard A, Widrig CA, Mc Bath P, Schineller B (1986) Arch Microbiol 146:35–40

    Article  CAS  Google Scholar 

  20. Chhabra SR, Stead P, Bainton NJ, Salmond GPC, Stewart GSAB, Williams P, Bycroft BW (1993) J Antibiot 46:441–454

    CAS  Google Scholar 

  21. Kaplan HB, Eberhard A, Widrig C, Greenberg EP (1985) J Labelled Compd Radiopharm 22:387–395

    Article  CAS  Google Scholar 

  22. Evans EA (1974) Tritium and its compounds. Butterworths, London

    Google Scholar 

  23. Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra S, Sockett R, Goldner M, Dessaux Y, Cámara M, Smith H, Williams P (2002) Infect Immun 70/10:5635–5646

    Article  Google Scholar 

  24. Horwitz W, Kamps LR, Boyer KW (1980) J Assoc Off Anal Chem 63/6:1344–1354

    Google Scholar 

  25. Frommberger M (2005) Entwicklung von Methoden zur Analyse von N-Acyl-Homoserinlactonen durch Kapillartrenntechniken und Massenspektrometrie. PhD thesis, Technical University Munich. http://tumb1.biblio.tu-muenchen.de/publ/diss/ww/2005/frommberger.pdf

  26. Byers JT, Lucas C, Salmond GPC, Welch M (2002) J Bacteriol 184/4:1163–1171

    Article  Google Scholar 

  27. Wang Y-J, Leadbetter JR (2005) Appl Environ Microbiol 71/3:1291–1299

    Article  Google Scholar 

  28. Delalande L, Faure D, Raffoux A, Uroz S, D’Angelo-Picard C, Elasri M, Carlier A, Berruyer R, Petit A, Williams P, Dessaux Y (2005) FEMS Microbiol Ecol 52:13–20

    Article  CAS  Google Scholar 

  29. Chhabra SR, Harty C, Hooi DSW, Daykin M, Williams P, Telford G, Pritchard DI, Bycroft BW (2003) J Med Chem 46:97–104

    Article  CAS  Google Scholar 

  30. Pomini AM, Araújo WL, Marsaioli AJ (2006) J Chem Ecol 32:1769–1778

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the GSF additional funding project “Molecular interactions in the rhizosphere” and in part by the Chinese Scholarship Council (CSC). The authors wish to thank B. Look for excellent technical assistance as well as C. Kuttler, L. Lyubenova, M. Diethelm, J. Rohlenová and M. Frommberger for valuable help and advice. The support of U. von Rad and J. B. Winkler is also much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schröder.

Additional information

Christine Götz and Agnes Fekete contributed equally to this publication.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götz, C., Fekete, A., Gebefuegi, I. et al. Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants. Anal Bioanal Chem 389, 1447–1457 (2007). https://doi.org/10.1007/s00216-007-1579-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1579-2

Keywords

Navigation