Skip to main content
Log in

Comparison of collision-induced dissociation and electron-induced dissociation of singly protonated aromatic amino acids, cystine and related simple peptides using a hybrid linear ion trap–FT-ICR mass spectrometer

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The gas-phase fragmentation reactions of singly protonated aromatic amino acids, their simple peptides as well as simple models for intermolecular disulfide bonds have been examined using a commercially available hybrid linear ion trap–Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Low-energy collision-induced dissociation (CID) reactions within the linear ion trap are compared with electron-induced dissociation (EID) reactions within the FT-ICR cell. Dramatic differences are observed between low-energy CID (which occurs via vibrational excitation) and EID. For example, the aromatic amino acids mainly fragment via competitive losses of NH3 and (H2O+CO) under CID conditions, while side-chain benzyl cations are major fragment ions under EID conditions. EID also appears to be superior in cleaving the S–S and S–C bonds of models of peptides containing an intermolecular disulfide bond. Systematic studies involving fragmentation as a function of electron energy reveal that the fragmentation efficiency for EID occurs at high electron energy (more than 10 eV) compared with the low-electron energy (less than 0.2 eV) typically observed for electron capture dissociation fragmentation. Finally, owing to similarities between the types of fragment ions observed under EID conditions and those previously reported in ultraviolet photodissociation experiments and the electron-ionization mass spectra, we propose that EID results in fragmentation via electronic excitation and vibrational excitation. EID may find applications in analyzing singly charged molecular ions formed by matrix-assisted laser desorption ionization.

Fragmentation of singly protonated aromatic amino acids and peptide models under electron induced dissociation (EID) conditions is observed to yield complementary fragmentation to collision induced dissociation (CID), with abundant product ions are formed from bond cleavages from the sidechain

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The reason why these two isomeric dipeptides exhibit different behavior with regard to NH3 loss is likely to arise from the ability of the indole side chains to participate in a neighboring-group reaction. In Trp-Gly, the indole group is directly adjacent to the protonated N terminus and is thus able to participate in a neighboring-group reaction similar to protonated tryptophan (Scheme 1). In contrast, the indole side chain of Gly-Trp is further away from the protonated N terminus and isomerization of the amide bond is required for the peptide to adopt a suitable geometry for NH3 loss via a neighboring-group reaction. Other lower-energy fragmentation pathways are observed instead.

  2. NH3 loss is absent in the CID fragmentation of protonated histidine owing to the presence of other favorable processes [38].

References

  1. Busch KL, Glish GL, McLuckey SA (1988) Mass spectrometry/mass spectrometry. Techniques & applications of tandem mass spectrometry. VCH, New York

    Google Scholar 

  2. McLuckey SA, Goeringer DE (1997) J Mass Spectrom 32:461–474

    Article  CAS  Google Scholar 

  3. Laskin J, Futrell JH (2003) Mass Spectrom Rev 22:158–181

    Article  CAS  Google Scholar 

  4. Cooks RG, Jo S-C, Green J (2004) Appl Surf Sci 231–232:13–21

    Article  Google Scholar 

  5. Laskin J (2004) Eur J Mass Spectrom 10:259–267

    Article  CAS  Google Scholar 

  6. Grill V, Shen J, Evans C, Cooks RG (2001) Rev Sci Instrum 72:3149–3179

    Article  CAS  Google Scholar 

  7. Fukui K, Naito Y, Akiyama Y, Takahashi K (2004) Eur J Mass Spectrom 10:639–647

    Article  CAS  Google Scholar 

  8. Kjeldsen F, Silivra OA, Zubarev RA (2006) Chem Eur J 12:7920–7928

    Article  CAS  Google Scholar 

  9. Marshall AG, Hendrickson CL, Jackson GS (1998) Mass Spectrom Rev 17:1–35

    Article  CAS  Google Scholar 

  10. Laskin J, Futrell JH (2005) Mass Spectrom Rev 24:135–167

    Article  CAS  Google Scholar 

  11. Barrow MP, Burkitt WI, Derrick PJ (2005) Analyst 130:18–28

    Article  CAS  Google Scholar 

  12. Hakansson K, Cooper HJ, Hudgins RR, Nilsson CL (2003) Curr Org Chem 7:1503–1525

    Article  CAS  Google Scholar 

  13. Smith RD (2000) Int J Mass Spectrom 200:509–544

    Article  CAS  Google Scholar 

  14. Zubarev RA, Haselmann KF, Budnik BA, Kjeldsen F, Jensen F (2002) Eur J Mass Spectrom 8:337–349

    Article  CAS  Google Scholar 

  15. Zubarev RA (2003) Mass Spectrom Rev 22:57–77

    Article  CAS  Google Scholar 

  16. Cooper HJ, Hakansson K, Marshall AG (2005) Mass Spectrom Rev 24:201–222

    Article  CAS  Google Scholar 

  17. Zubarev RA, Kelleher NL, McLafferty FW (1998) J Am Chem Soc 120:3265–3266

    Article  CAS  Google Scholar 

  18. Zubarev RA, Kruger NA, Fridriksson EK, Lewis MA, Horn DM, Carpenter BK, McLafferty FW (1999) J Am Chem Soc 121:3265–3266

    Article  Google Scholar 

  19. Kjeldsen F, Haselmann KF, Budnik BA, Jensen F, Zubarev RA (2002) Chem Phys Lett 356:201–206

    CAS  Google Scholar 

  20. Haselmann KF, Budnik BA, Kjeldsen F, Nielsen ML, Olsen JV, Zubarev RA (2002) Eur J Mass Spectrom 8:117–121

    Article  CAS  Google Scholar 

  21. Budnik BA, Haselmann KF, Zubarev RA (2001) Chem Phys Lett 342:299–302

    Article  CAS  Google Scholar 

  22. Adams NG, Poterya V, Babcock LM (2006) Mass Spectrom Rev 25:798–828

    Article  CAS  Google Scholar 

  23. Budnik BA, Zubarev RA (2000) Chem Phys Lett 316:19–23

    Article  CAS  Google Scholar 

  24. Cody RB, Freiser BS (1979) Anal Chem 51:547–551

    Article  CAS  Google Scholar 

  25. Cody RB, Freiser BS (1987) Anal Chem 59:1054–1056

    Article  CAS  Google Scholar 

  26. Gord JR, Horning SR, Wood JM, Cooks RG, Freiser BS (1993) J Am Soc Mass Spectrom 4:145–151

    Article  CAS  Google Scholar 

  27. Nielsen ML, Budnik BA, Haselmann KF, Olsen JV, Zubarev RA (2000) Chem Phys Lett 330:558–562

    Article  CAS  Google Scholar 

  28. Nielsen ML, Budnik BA, Haselmann KF, Zubarev RA (2003) Int J Mass Spectrom 226:181–187

    Article  CAS  Google Scholar 

  29. Khairallah GN, O’Hair RAJ, Bruce MI (2006) Dalton Trans 3699–3707

  30. Malek R, Metelmann-Strupat W, Zeller M, Muenster H (2005) Am Biotech Lab 8–9

  31. Lioe H, O’Hair RAJ, Reid GE (2004) J Am Soc Mass Spectrom 15:65–76

    Article  CAS  Google Scholar 

  32. Kang H, Dedonder-Lardeux C, Jouvet C, Martrenchard S, Gregoire G, Desfrancois C, Schermann J-P, Barat M, Fayeton JA (2004) Phys Chem Chem Phys 6:2628–2632

    Article  CAS  Google Scholar 

  33. Nolting D, Marian C, Weinkauf R (2004) Phys Chem Chem Phys 6:2633–2640

    Article  CAS  Google Scholar 

  34. Kang H, Jouvet C, Dedonder-Lardeux C, Martrenchard S, Gregoire G, Desfrancois C, Schermann J-P, Barat M, Fayeton JA (2005) Phys Chem Chem Phys 7:394–398

    Article  CAS  Google Scholar 

  35. Talbot FO, Tabarin T, Antoine R, Broyer M, Dugourd P (2005) J Chem Phys 122:074310/1–5

    Google Scholar 

  36. Barlow CK, Moran D, Radom L, McFadyen WD, O’Hair RAJ (2006) J Phys Chem A 110:8304–8315

    Article  CAS  Google Scholar 

  37. Lioe H, O’Hair RAJ (2005) Org Biomol Chem 3:3618–3628

    Article  CAS  Google Scholar 

  38. Farrugia JM, Taverner T, O’Hair RAJ (2001) Int J Mass Spectrom 209:99–112

    Article  CAS  Google Scholar 

  39. Dookeran NN, Yalcin T, Harrison AG (1996) J Mass Spectrom 31:500–508

    Article  CAS  Google Scholar 

  40. Rogalewicz F, Hoppilliard Y, Ohanessian G (2000) Int J Mass Spectrom 195/196:565–590

    Article  CAS  Google Scholar 

  41. El Aribi H, Orlova G, Hopkinson AC, Siu KWM (2004) J Phys Chem A 108:3844–3853

    Article  Google Scholar 

  42. Sorensen M, Forster JS, Hvelplund P, Jorgensen TJD, Nielsen SB, Tomita S (2001) Chem Eur J 7:3214–3222

    Article  CAS  Google Scholar 

  43. Stein SE (2005) In: Linstrom PJ, Mallard WG (eds) NIST chemistry WebBook. NIST standard reference database number 69. National Institute of Standards and Technology, Gaithersburg http://webbook.nist.gov

    Google Scholar 

  44. Sobolewski AL, Domcke W, Dedonder-Lardeux C, Jouvet C (2002) Phys Chem Chem Phys 4:1093–1100

    Article  CAS  Google Scholar 

  45. Rinker A, Halleman CD, Wedlock MR (2005) Chem Phys Lett 414:505–508

    Article  CAS  Google Scholar 

  46. Barr J, Torres I, Verdasco E, Banares L, Aoiz FJ, Martinez-Haya B (2004) J Phys Chem A 108:7936–7948

    Article  CAS  Google Scholar 

  47. Gorman JJ, Wallis TP, Pitt JJ (2002) Mass Spectrom Rev 21:183–216

    Article  CAS  Google Scholar 

  48. Lioe H, O’Hair RAJ (2007) J Am Soc Mass Spectrom 18:1109–1123

    Article  CAS  Google Scholar 

  49. Fung YME, Kjeldsen F, Silivra OA, Chan TWD, Zubarev RA (2005) Angew Chem Int Ed Engl 44:6399–6403

    Article  CAS  Google Scholar 

  50. Zubarev RA, Kruger NA, Fridriksson EK, Lewis MA, Horn DM, Carpenter BK, McLafferty FW (1999) J Am Chem Soc 121:2857–2862

    Article  CAS  Google Scholar 

  51. Savitski MM, Kjeldsen F, Nielsen ML, Zubarev RA (2006) Angew Chem Int Ed Engl 45:5301–5303

    Article  CAS  Google Scholar 

  52. Stingl C, Ihling C, Ammerer G, Sinz A, Mechtler K (2006) Biochim Biophys Acta 1764:1842–1852

    CAS  Google Scholar 

Download references

Acknowledgements

R.A.J.O. thanks the Australian Research Council for support of this work under the ARC Centres of Excellence program (ARC Centre of Excellence in Free Radical Chemistry and Biotechnology), the ARC-Lief program and VICS for helping fund the purchase of the LTQ FT FT-ICR instrument. H.L. acknowledges the award of an Elizabeth and Vernon Puzey Postgraduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. J. O’Hair.

Additional information

Part 56 of the series “Gas phase ion chemistry of biomolecules”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lioe, H., O’Hair, R.A.J. Comparison of collision-induced dissociation and electron-induced dissociation of singly protonated aromatic amino acids, cystine and related simple peptides using a hybrid linear ion trap–FT-ICR mass spectrometer. Anal Bioanal Chem 389, 1429–1437 (2007). https://doi.org/10.1007/s00216-007-1535-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1535-1

Keywords

Navigation