Skip to main content
Log in

In situ characterisation of a microorganism surface by Raman microspectroscopy: the shell of Ascaris eggs

Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Intestinal nematodes are very common human parasites and a single species, Ascaris lumbricoïdes, is estimated to infect a quarter of the world’s population. A sticky external layer covers their eggs. This work shows that Raman vibrational confocal spectroscopy is able to give information on the biochemical composition of the shell of Ascaris eggs. The biochemical localised characterisation of Ascaris eggs was performed directly on the eggs in their aqueous environment. The studied parasites came from two origins: dissections of adult females and extractions from biosolid sludges. The presence of mucopolysaccharides, proteins and chitin in the shell was demonstrated. The presence of ascaroside compounds was shown particularly via the narrow and intense bands from the organised long CH2 chains. To the best of our knowledge, this is the first time that the latter have been observed in Raman vibrational spectra of microorganisms. Hydration of the shell was different depending on the intensity of the colour of the sludge eggs. Knowledge of the biochemical structural properties of egg surfaces would be useful to understand the egg adhesion phenomena on vegetables contaminated by reused wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Crompton DWT (2001) Adv Parasitol 48:285–375

    Article  CAS  Google Scholar 

  2. Meng XQ, Wang SS, Wang BX, Ying GH, Li XY, Zhao YZ (1981) Scan Electron Microsc III:187–190

    Google Scholar 

  3. Lysek H, Malinsky J, Janisch R (1985) Folia Parasitol 32:381–384

    CAS  Google Scholar 

  4. Bartley JP, Bennett EA, Darben PA (1996) J Nat Prod 59:921–926

    Article  CAS  Google Scholar 

  5. Wharton D (1980) Parasitology 81:447–463

    Article  CAS  Google Scholar 

  6. Sromava D, Lysek H (1990) Folia Parasitol 37:77–80

    Google Scholar 

  7. Monné L, Hönig G (1954) Arkiv för Zoologi 7:261–272

    Google Scholar 

  8. Schuster KC, Reese I, Urlaub E, Gapes JR, Lendl B (2000) Anal Chem 72:5529–5534

    Article  CAS  Google Scholar 

  9. Rösch P, Schmitt M, Kiefer W, Popp J (2003) J Mol Struct 661–662:363–369

    Article  CAS  Google Scholar 

  10. Huang WE, Griffiths RI, Thompson IP, Bailey MJ, Whiteley AS (2004) Anal Chem 76:4452–4458

    Article  CAS  Google Scholar 

  11. Huang YS, Karashima T, Yamamoto M, Ogura T, Hamaguchi H (2004) J Raman Spectrosc 35:525–526

    Google Scholar 

  12. Capizzi-Banas S, Maux M, Schwartzbrod J (2002) Helminthologia 39:197–204

    Google Scholar 

  13. Control of pathogens and vector attraction in sewage sludge (1999) EPA/625/R-92/013, 1-151. Washington DC, US EPA

  14. Fairbairn D (1957) Exp Parasitol 6:491–554

    Article  CAS  Google Scholar 

  15. Magat WJ, Hubbard WJ, Jeska EL (1972) Exp Parasitol 32:102–108

    Article  CAS  Google Scholar 

  16. Fairbairn D (1955) Can J Biochem Physiol 33:122–129

    CAS  Google Scholar 

  17. Borchman D, Tang D, Yappert MC (1999) Biospectroscopy 5:151–167

    Article  CAS  Google Scholar 

  18. Weng YM, Weng RH, Tzeng CY, Chen W (2003) Appl Spectrosc 57:413–418

    Article  CAS  Google Scholar 

  19. Spiro TG, Gaber BP (1977) Ann Rev Biochem 46:553–572

    Article  CAS  Google Scholar 

  20. Simons L, Bergström G, Blomfelt G, Forss S, Stenbäck H, Wansén G (1972) Comment Phys-Math 42:125–207

    Google Scholar 

  21. (1987) Biological applications of Raman spectroscopy. Wiley-Interscience, New York

  22. Luu DV, Cambon L, Lapeyre C (1980) J Raman Spectrosc 9:172–175

    Article  Google Scholar 

  23. Bansil R, Yannas IV, Stanley HE (1978) Biochim Biophys Acta 541:535–542

    CAS  Google Scholar 

  24. Lee SA, Myers LC, Powell JW, Suleski TJ, Rupprecht A (1993) J Biomol Struct Dyn 11:191–201

    CAS  Google Scholar 

  25. Atha DH, Gaigalas AK, Reipa V (1996) J Pharm Sci 85:52–56

    Article  CAS  Google Scholar 

  26. Galat A, Popowicz J (1978) Bull Acad Pol Sci, Sér Sci Biol 26:519–524

    CAS  Google Scholar 

  27. Gremlich HU, Yan B (2001) Infrared and Raman spectroscopy of biological materials. Practical spectroscopy series, vol 24. Marcel Dekker, New York, pp 1–581

    Google Scholar 

  28. Edwards HGM, Farwell DW, Williams AC (1994) Spectrochim Acta 50A:807–811

    CAS  Google Scholar 

  29. Beattie JR, Bell SEJ, Moss BW (2004) Lipids 39:407–419

    Article  CAS  Google Scholar 

  30. Thomas GJ Jr, Kyogoku Y (1976) Infrared and Raman spectroscopy. Practical spectroscopy series. Marcel Dekker, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabienne Quilès.

Electronic supplementary material

Below is the link to the electronic supplementary material

216_2006_638_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quilès, F., Balandier, JY. & Capizzi-Banas, S. In situ characterisation of a microorganism surface by Raman microspectroscopy: the shell of Ascaris eggs. Anal Bioanal Chem 386, 249–255 (2006). https://doi.org/10.1007/s00216-006-0638-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0638-4

Keywords

Navigation