Skip to main content
Log in

Direct optical sensors: principles and selected applications

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the field of bio and chemosensors a large number of detection principles has been published within the last decade. These detection principles are based either on the observation of fluorescence-labelled systems or on direct optical detection in the heterogeneous phase. Direct optical detection can be measured by remission (absorption of reflected radiation, opt(r)odes), by measuring micro-refractivity, or measuring interference. In the last case either Mach–Zehnder interferometers or measurement of changes in the physical thickness of the layer (measuring micro-reflectivity) caused, e.g., by swelling effects in polymers (due to interaction with analytes) or in bioassays (due to affinity reactions) also play an important role. Here, an overview of methods of microrefractometric and microreflectometric principles is given and benefits and drawbacks of the various approaches are demonstrated using samples from the chemo and biosensor field. The quality of sensors does not just depend on transduction principles but on the total sensor system defined by this transduction, the sensitive layer, data acquisition electronics, and evaluation software. The intention of this article is, therefore, to demonstrate the essentials of the interaction of these parts within the system, and the focus is on optical sensing using planar transducers, because fibre optical sensors have been reviewed in this journal only recently. Lack of selectivity of chemosensors can be compensated either by the use of sensor arrays or by evaluating time-resolved measurements of analyte/sensitive layer interaction. In both cases chemometrics enables the quantification of analyte mixtures. These data-processing methods have also been successfully applied to antibody/antigen interactions even using cross-reactive antibodies. Because miniaturisation and parallelisation are essential approaches in recent years, some aspects and current trends, especially for bio-applications, will be discussed. Miniaturisation is especially well covered in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marazela MD, Morreno-Bondi MC (2002) Anal Bioanal Chem 372:664

    Article  CAS  PubMed  Google Scholar 

  2. Göpel W, Hesse J, Zemel JN (1992) Sensors, a comprehensive survey, vol I–VIII. VCH, Weinheim

  3. Bilitewski U, Turner A (eds) (2000) Biosensors in environmental monitoring. Harwood Academic Publishers, Amsterdam

    Google Scholar 

  4. Scheller FW, Schubert F, Fedrowitz J (eds) (1996) Frontiers of biosensors I+II. Birkhäuser Verlag, Basel

    Google Scholar 

  5. Lübbers DW, Opitz N (1983) Sens Actuators B 4:641

    Article  Google Scholar 

  6. Gauglitz G, Reichert M (1992) Sens Actuators B 6:83

    Article  Google Scholar 

  7. Wolfbeis O (2004) Anal Chem 76:3269

    Article  CAS  PubMed  Google Scholar 

  8. Wolfbeis OS (ed) (1992) Fluorescence spectroscopy: new methods and applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  9. Wolfbeis OS, Boisdé GE, Gauglitz G (1996) Sensors, vol II, part I. In: Baltes H, Goepel W, Hesse J (eds) Weinheim, p 573

  10. Draxler S, Lippitsch ME (1996) Appl Optics 35:4117

    CAS  Google Scholar 

  11. Gauglitz G (1996) Sensors, update vol I. In: Baltes H, Goepel W, Hesse J (eds) Weinheim, p 1

  12. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer/Plenum, New York, p 298

    Google Scholar 

  13. Weber G (1966) Hercules DM (ed) Fluorescence and phosphorescence analysis. Wiley, New York, p 217

    Google Scholar 

  14. Rigler R (1993) Eur Biophys 22:169

    CAS  Google Scholar 

  15. Hecht E, Zajak A (2003) Optics. Addison-Wesley, Reading

  16. Brecht A, Gauglitz G, Kraus G, Nahm W (1993) Sens Actuators B 11:21

    Article  Google Scholar 

  17. Reichl D, Krage R, Krummel C, Gauglitz G (2000) Appl Spectrosc 54:583

    Article  CAS  Google Scholar 

  18. Azzam RMA, Bahara NM (1998) Ellipsometry and polarized light. North Holland

    Google Scholar 

  19. Arwin H, Aspnes DE (1986) Thin Solid Films 138:195

    Article  CAS  Google Scholar 

  20. Mutschler T, Kieser B, Frank R, Gauglitz G (2002) Anal Bioanal Chem 374:658

    Article  CAS  PubMed  Google Scholar 

  21. Heideman RG, Kooyman RPH, Greve J (1993) Sens Actuators B B:209

    Article  Google Scholar 

  22. Brandenburg A, Henninger R (1994) Appl Optics 33:5941

    Google Scholar 

  23. Brandenburg A, Hinkov V, Konz W (1992) Sensors, vol. 6. In: Göpel W, Hesse J, Zemel JN (eds) VCH, Weinheim, p 399

  24. Clerc D, Lukosz W (1994) Sens Actuators B 19:581

    Article  CAS  Google Scholar 

  25. Kunz RE, Edlinger J, Curtis BJ, Gale MT, Kempen LU, Rudigier H, Schuetz H (1994) Proc SPIE Int Soc Opt Eng 2068:313

    CAS  Google Scholar 

  26. Cush R, Cronin JM, Stewart WJ, Maule CH, Molloy J, Goddard NJ (1993) Biosens Bioelectron 8:347

    Article  CAS  Google Scholar 

  27. Liedberg B, Nylander C, Lundström I (1983) Sens Actuators B 4:299

    Article  CAS  Google Scholar 

  28. Piraud C, Mwarania E, Wylangowski G, Wilkinson J, O’Dwyer K, Schiffrin DJ (1992) Anal Chem 64:651

    CAS  Google Scholar 

  29. Lakowicz JR (2004) Anal Biochem 324(2):153

    Article  CAS  PubMed  Google Scholar 

  30. Othonos A (1997) Rev Sci Instr 68:4309

    Article  CAS  Google Scholar 

  31. Lukosz W, Stamm C (1991) Sens Actuators A 25:185

    Article  Google Scholar 

  32. Nellen PhM, Lukosz W (1993) Biosens Bioelectron 8:129

    Article  Google Scholar 

  33. Fattinger C, Mangold C, Gale MT, Schuetz H (1995) Opt Eng 34:2744

    CAS  Google Scholar 

  34. Kunz RE (1991) Proc SPIE Int Soc Opt Eng 1587:98

    Google Scholar 

  35. http://www.affinity-sensors.co.uk/iasys.htm

  36. Homola J, Yee S, Myszka D (2002) In: Ligler FS, Rowe T, Chris A (eds) Optical biosensors present and future. Elsevier, Amsterdam, p 207

    Google Scholar 

  37. Homola J, Yee SS, Gauglitz G (1999) Sens Actuators B 54:3

    Article  Google Scholar 

  38. http://www.biacore.com/home.lasso

  39. Rich RL, Myszka DG (2000) J Mol Recognit 13:388

    Article  CAS  PubMed  Google Scholar 

  40. Van Der Merwe, Anton P (2001) Surface plasmon resonance, in protein-ligand interactions: hydrodynamics and calorimetry. Oxford, London, p 137

  41. Davis TM, Wilson WD (2001) Methods Enzymol 340:22

    CAS  PubMed  Google Scholar 

  42. Sadana A (2001) Biotech Genetic Eng Rev 18:29

    CAS  Google Scholar 

  43. Kinning T, Edwards P, In: Ligler FS, Rowe T, Chris A (eds) Optical biosensors. Elsevier, Amsterdam, p 253

  44. Voros J, Ramsden JJ, Scucs G, Szendro I, De Paul SM, Textor M, Spencer ND (2002) Biomaterials 23(17):3699

    Article  CAS  PubMed  Google Scholar 

  45. Kuhlmeier D, Rodda E, Kolarik LO, Furlong DN, Bilitewski U (2003) Biosens Bioelectron 18:925

    Article  CAS  PubMed  Google Scholar 

  46. Santos JL, Ferreira LA (2002) Fibre Bragg grating interrogation techniques. In: Handbook of optical fibre sensing technology. Wiley, Chichester, p 379

  47. Knoll W (2004) Bunsenmagazin 3:69

    Google Scholar 

  48. Liebermann T, Knoll W (2000) Colloids Surfaces A 171:115

    Article  CAS  Google Scholar 

  49. Klotz A, Brecht A, Barzen C, Gauglitz G, Harris RD, Quigley QR, Wilkinson JS (1998) Sens Actuators B 51:181

    Article  Google Scholar 

  50. Förster Th (1951) Fluoreszenz Organischer Verbindungen. Vandenhoek und Ruprecht, Göttingen

    Google Scholar 

  51. Mere L, Bennett T, Coassin P, England P, Hamman B, Rink T, Zimmerman S, Negeulescu P (1999) Drug Discovery Today 4:363

    Article  CAS  PubMed  Google Scholar 

  52. Seidel M, Dankbar D (2004) Anal Bioanal Chem 379:904

    Article  CAS  PubMed  Google Scholar 

  53. Baldini F, Bracci S (2000) Polymers for optical fiber sensors. In: Osada Y, De Rossi DE (eds) Polymer sensors and actuators. Springer, Berlin Heidelberg New York, p 91

    Google Scholar 

  54. Rathgeb F, Gauglitz G (2000) In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, p 2189

    Google Scholar 

  55. Tang K, Garetz BA, Green MM, Herman FM (2002) Polymer preprints 43(2):538

    CAS  Google Scholar 

  56. Lehner MD (1996) Macromolecular chemistry: a textbook for chemists, physicists, material scientists, and process technicians. Birkhäuser Verlag, Basel

    Google Scholar 

  57. Dieterle F, Belge G, Betsch C, Gauglitz G (2002) Anal Bioanal Chem 374:858

    Article  CAS  PubMed  Google Scholar 

  58. Birkert O, Haake H-M, Schütz A, Mack J, Brecht A, Jung G, Gauglitz G (2000) Anal Biochem 282:200

    Article  CAS  PubMed  Google Scholar 

  59. Raitza M, Herold M, Ellwanger A, Gauglitz G, Albert K (2000) Macromol Chem Phys 201:825

    Article  CAS  Google Scholar 

  60. Löfas L, Johnsson B (1990) J Chem Soc Chem Commun 1526

  61. Feldmann K, Hähner G, Spencer ND, Harder P, Grunze M (1999) J Am Chem Soc 121:10134

    Article  Google Scholar 

  62. Piehler J, Brecht A, Valiokas R, Liedberg B, Gauglitz G (2000) Biosens Bioelectron 15:473

    Article  CAS  PubMed  Google Scholar 

  63. Gershon PD, Khilko S (1995) J Immun Methods 183:65

    Article  CAS  Google Scholar 

  64. Tien HT (1985) Prog Surf Sci 19:169

    Article  CAS  Google Scholar 

  65. Park J, Groves WA, Zellers ET (1999) Anal Chem 71:3877

    Article  CAS  PubMed  Google Scholar 

  66. Lehn J-M, Ball P (2000) Supramolecular chemistry. In: Hall N (ed) New chemistry. Cambridge University Press, London, p 300

    Google Scholar 

  67. Garnier F (2000) Biomed chem. Wiley, New York, p 349

    Google Scholar 

  68. Dickert FL, Schuster O (1995) Mikrochim Acta 119:55

    CAS  Google Scholar 

  69. Dominik A, Roth HJ, Schierbaum KD, Goepel W (1994) Supramol Sci 1:11

    CAS  Google Scholar 

  70. Schurig V, Grosenick H (1994) J Chromatogr A 666:617

    CAS  Google Scholar 

  71. Jung, Hofstetter H, Feiertag S, Stoll D, Hofstetter O, Wiemüller K-H (1996) Angew Chem Int Ed Engl 35:2148

    CAS  Google Scholar 

  72. Bodenhöfer K, Hierlemann A, Seemann J, Gauglitz G, Koppenhoefer B, Göpel W (1997) Nature 577:577

    Google Scholar 

  73. Kieser B, Fietzek C, Schmidt R, Belge G, Weimar U, Schuring V, Gauglitz G (2002) Anal Chem 74:3005

    Article  CAS  PubMed  Google Scholar 

  74. Wang J (1999) Curr Issue Mol Biol 1(2):117

    CAS  Google Scholar 

  75. Koch T (2003) J Phys Condensed Matter 15(18):S1861

    CAS  Google Scholar 

  76. Demidov VV (2002) Trends Biotechnol 21(1):4

    Article  Google Scholar 

  77. Sinner E, Knoll W (2001) Curr Opin Chem Biol 5:705

    Article  CAS  PubMed  Google Scholar 

  78. Richter R, Brisson A Langmuir 19:1632

  79. Haupt K, Mosbach K (2000) Chem Rev 100:2495

    Article  CAS  PubMed  Google Scholar 

  80. Haupt K (2003) Anal Chem 75(17):376A

    CAS  PubMed  Google Scholar 

  81. Diaz-Garcia ME, Badia R (2004) Molecularly imprinted polymers for optical sensing devices. In: Springer series on chemical sensors and biosensors (optical sensors), p 35

  82. Kindschy LM, Alocilja EC (2004) Trans ASAE 47(4):1375

    CAS  Google Scholar 

  83. Ye L, Haupt K (2004) Anal Bioanal Chem 378(8):1887

    Article  CAS  PubMed  Google Scholar 

  84. Mirsky VM, Hirsch T, Piletsky S, Wolfbeis OS (1999) Angew Chem Int Ed Engl 38:1108

    Article  CAS  Google Scholar 

  85. Kumpf M, Gauglitz G (2003) Bestimmung der Assoziationsratenkonstanten in homogener Phase mittels reflektometrischer Interferenzspektroskopie. In: Proceedings of the biosensorsymposium, Potsdam

  86. Eddowes MJ (1987) Biosens 3:1

    Article  CAS  Google Scholar 

  87. Willard D, Proll G, Reder S, Gauglitz G (2003) Environ Sci Pollut Res 10:188

    CAS  Google Scholar 

  88. Schobel U, Coille I, Brecht A, Steinwand M, Gauglitz G (2001) Anal Chem 73:5172

    CAS  PubMed  Google Scholar 

  89. Schobel U, Barzen C, Gauglitz G (2000) Fresenius J Anal Chem 366:646

    CAS  PubMed  Google Scholar 

  90. Reder S, Dieterle F, Jansen H, Alcock S, Gauglitz G (2003) Biosens Bioelectron 19:447

    Article  CAS  PubMed  Google Scholar 

  91. Seidel M, Gauglitz G (2003) TrAC Trend Anal Chem 22:385

    CAS  Google Scholar 

  92. Kieser B, Dieterle F, Gauglitz G (2002) Anal Chem 74:4781

    Article  CAS  PubMed  Google Scholar 

  93. Dieterle F, Kieser B, Gauglitz G (2003) Chemometr Intell Lab 65:67

    Article  CAS  Google Scholar 

  94. Mozsolits H, Aguilar MI (2002) Biopolymers 66(1):3

    Article  CAS  PubMed  Google Scholar 

  95. Kaspar S (2000) Dissertation, Tübingen. pdf-file: http://w210.ub.uni-tuebingen. de/dbt/volltexte/2000/197/pdf/Dissertation_kaspar.pdf

  96. Yan HM, Kraus G, Gauglitz G (1995) Anal Chim Acta 312:1

    Article  CAS  Google Scholar 

  97. Kaspar S, Rathgeb F, Nopper N, Gauglitz G (1999) Fresenius J Anal Chem 363:193

    Article  CAS  Google Scholar 

  98. Belge G, Beyerlein D, Betsch C, Eichhorn K-J, Gauglitz G, Grundke K, Voit B (2002) Anal Bioanal Chem 374:403

    Article  CAS  PubMed  Google Scholar 

  99. Busche S, Kasper M, Belge G, Dieterle F, Gauglitz G (2004) Meas Sci Technol 15(3):540

    Article  Google Scholar 

  100. Busche S, Dieterle F, Kieser B, Gauglitz G (2003) Sensor Actuators B 89:192

    Article  Google Scholar 

  101. Leipert D, Nopper D, Bauser M, Gauglitz G, Jung G (1998) Angew Chem Int Ed 37:3308

    Article  CAS  Google Scholar 

  102. Nopper D, Lammershop O, Wulff G, Gauglitz G (2003) Anal Bioanal Chem 377(4):608

    Article  CAS  PubMed  Google Scholar 

  103. Coille I, Reder S, Bucher S, Gauglitz G (2002) Biomol Eng 18:273

    Google Scholar 

  104. Piehler J, Brecht A, Gauglitz G (1996) Anal Chem 68:139

    Article  CAS  Google Scholar 

  105. Haake H-M, Tünnemann R, Brecht A, Austel V, Jung G, Gauglitz G (2002) Anal Biochem 300:107

    Article  CAS  PubMed  Google Scholar 

  106. Tünnemann R, Mehlmann M, Süssmuth RD, Bühler B, Pelzer S, Wohlleben W, Fiedler H-P, Wiesmüller K-H, Gauglitz G, Jung G (2001) Anal Chem 73:4313

    Article  PubMed  Google Scholar 

  107. Gauglitz G (2000) Curr Opin Chem Biol 4:351

    Article  CAS  PubMed  Google Scholar 

  108. Birkert O, Tünnemann R, Jung G, Gauglitz G (2002) Anal Chem 74:834

    Article  CAS  PubMed  Google Scholar 

  109. Kröger K, Bauer J, Fleckenstein F, Rademann J, Jung G, Gauglitz G (2002) Biosens Bioelectron 17:937

    Article  PubMed  Google Scholar 

  110. Birkert O, Gauglitz G (2002) Anal Bioanal Chem 372:141

    Article  CAS  PubMed  Google Scholar 

  111. Sauer M, Brecht A, Charisse K, Stemmler I, Gauglitz G, Bayer E (1999) Anal Chem 71:2850

    Article  CAS  PubMed  Google Scholar 

  112. Tschmelak J, Proll G, Riedt J, Kaiser J, Kraemmer P, Bárzaga L, Wilkinson JS, Hua P, Hole JP, Nudd R, Jackson M, Abuknesha R, Barceló D, Rodriguez-Mozaz S, López de Alda MJ, Sacher F, Stien J, Slobodník J, Oswald P, Kozmenko H, Korenková E, Tóthová L, Krascsenits Z, Gauglitz G (2004) Biosens Bioelectron (accepted)

  113. Jones JDC (2002) In: Lopez-Giguera JM (ed) Handbook of optical fibre sensing technology. Wiley, Chichester, p 227

    Google Scholar 

  114. Baldini F, Mignani AG. In: Lopez-Giguera JM (ed) Handbook of optical fibre sensing technology. Wiley, Chichester, p 705

  115. Barker SLR, Clark HA, Kopelman R (2002) In: Law WT, Akmal N, Usmani AM (eds) Biomedical diagnostic science and technology. Marcel Dekker Inc., New York, p 139

    Google Scholar 

  116. Murphy CJ (2002) Anal Chem 74:520A

    CAS  PubMed  Google Scholar 

  117. Campbell DP, McCloskey CJ (2002) In: Ligler FS, Rowe T, Chris A (eds) Optical biosensors. Elsevier, Amsterdam, p 277

    Google Scholar 

  118. Spaeth K, Kraus G, Gauglitz G (1997) Fresenius Anal Chem 357:292

    Article  CAS  Google Scholar 

  119. Spaeth K, Gauglitz G (1998) Mat Sci Eng C5:187

    Article  Google Scholar 

  120. Gauglitz G, Ingenhoff J (1991) Ber Bunsen Phys Chem 95:1558

    CAS  Google Scholar 

  121. Fabricius N, Gauglitz G, Ingenhoff J (1992) Sens Actuators B 7:672

    Article  Google Scholar 

  122. Gauglitz G, Ingenhoff J (1993) Sens Actuators B 11:207

    Article  Google Scholar 

  123. Haug M, Schierbaum KD, Gauglitz G, Göpel W (1993) Sens Actuators B 11:383

    Article  Google Scholar 

  124. Nopper D, Gauglitz G (1998) Fresenius J Anal Chem 362:114

    Article  CAS  Google Scholar 

  125. Kieser B, Pauluth D, Gauglitz G (2001) Anal Chim Acta 434:231

    Article  CAS  Google Scholar 

  126. Franks NP, Lieb WR (1994) Nature 367:607

    Article  CAS  PubMed  Google Scholar 

  127. Dickert FL, Zwissler GK (1993) Bunsenges Phys Chem 97(2):184

    CAS  Google Scholar 

  128. Filippini C, Sonnleitner B, Fiechter A, Bradley J, Schmid R (1991) J Biotechnol 18:153

    Article  CAS  PubMed  Google Scholar 

  129. Mehlmann M, Garvin A, Steinwand M, Gauglitz G (2004) Coupling of reflectometric interference spectroscopy with MALDI-MS. Anal Bioanal Chem (submitted)

  130. Haake H-M, Schütz A, Gauglitz G (2000) Fresenius J Anal Chem 366:576

    Article  CAS  PubMed  Google Scholar 

  131. Piehler J, Brecht A, Giersch T, Kramer K, Hock B, Gauglitz G (1997) Sens Actuators B 39:432

    Article  Google Scholar 

  132. Rothmund M, Schütz A, Brecht A, Gauglitz G, Berthel G, Graefe D (1997) Fresenius J Anal Chem 359:15

    Article  CAS  Google Scholar 

  133. Ganesan A (1998) Angew Chem 110:2989

    Article  Google Scholar 

  134. Rademann J, Groetli M, Meldal M, Bock K (1999) J Am Chem Soc 121:5459

    Article  CAS  Google Scholar 

  135. http://www.htsbiosystems.com/products/flex_chip.htm

  136. de Heij B, Steinert C, Sandmaier H, Zengerle R (2003) Sensor Actuators A 103:88

    Article  Google Scholar 

  137. Houston JG, Banks M (1997) Curr Opin Biotechnol 8:734

    Article  CAS  PubMed  Google Scholar 

  138. Peter R, Meusel M, Grawe F, Katerkamp A, Cammann K, Börchers T (2001) Fresenius J Anal Chem 371:120

    Article  CAS  PubMed  Google Scholar 

  139. Duveneck G, Pawlak M, Neuschäfer D, Baer E, Budach W, Pieles U, Ehrat M (1997) Sens Actuators B 38:88

    Article  Google Scholar 

  140. Sherma J (1995) Anal Chem 67:1R

    CAS  Google Scholar 

  141. Barzen C, Brecht A, Gauglitz G (2002) Biosens Bioelectron 17:289

    Article  CAS  PubMed  Google Scholar 

  142. Kröger K, Jung A, Reder S, Gauglitz G (2002) Anal Chim Acta 469:37

    Article  Google Scholar 

  143. Ramsay M (1996) Anal Methods Instrum Spec Issue 24

  144. Vilkner T, Janasek D, Manz A (2004) Anal Chem 76(12):3373

    Article  CAS  PubMed  Google Scholar 

  145. Suzuki H (2004) Chem Sens 20:121

    CAS  Google Scholar 

  146. Sheehan AD, Quinn J, Daly S, Dillon P, O’Kennedy R (2003) Anal Lett 36(3):511

    CAS  Google Scholar 

  147. Gardeniers JGE, van den Berg A (2004) Anal Bioanal Chem 378(7):1700

    Article  CAS  PubMed  Google Scholar 

  148. Schasfoort RBM (2004) Expert Rev Proteomics 1(1):123

    CAS  Google Scholar 

  149. Bühler B, Fröhlich D, Haake H-M, Brecht A, Gauglitz G (2001) TRAC Trend Anal Chem 20(4):186

    Article  Google Scholar 

  150. Piehler J, Brandenburg A, Brecht A, Wagner E, Gauglitz G (1997) Appl Opt 36:6554

    CAS  Google Scholar 

  151. Hänel C, Gauglitz G (2002) Anal Bioanal Chem 372:91

    Article  PubMed  Google Scholar 

  152. Ligler FS, Taitt CR, Shriver-Lake LC, Sapsford KE, Shubin Y, Golden JP (2003) Anal Bioanal Chem 377(3):469

    Article  CAS  PubMed  Google Scholar 

  153. Starodub NF, Rebriev AV, Starodub VM (2002) NATO science series, series I: life and behavioural sciences, vol 346, p 391

    Google Scholar 

  154. Ahmad A, Zong Q, Rock M, McLean M, Breau A (2004) Anal Biochem 324(2):304

    CAS  PubMed  Google Scholar 

  155. Haasnoot W, Bienenmann-öoum M, Kohen F (2003) Anal Chim Acta 483(1-2):171

    CAS  Google Scholar 

  156. Piehler J, Brecht A, Geckeler KE, Gauglitz G (1996) Biosens Bioelectron 11:579

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

For long years of support of his research the author has to thank the Deutschen Forschungsgemeinschaft, the Fond der Chemischen Industrie, the BMBF, the Arbeitsgemeinschaft Industrieller Forschung, the Deutsche Bundesstiftung Umwelt, some European funding and much industrial cooperation. Details of the funding is acknowledged in the different publications cited. The author also wants to thank all his coworkers, cited and not cited, for work achieved, and, especially, Dr Martin Mehlmann for checking the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guenter Gauglitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauglitz, G. Direct optical sensors: principles and selected applications. Anal Bioanal Chem 381, 141–155 (2005). https://doi.org/10.1007/s00216-004-2895-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2895-4

Keywords

Navigation