Skip to main content
Log in

Perturbation approach to constrained electron transfer in density functional theory

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

As an alternative to the variational constrained density functional theory a simpler perturbative approach based on the Taylor series expansion, around the ground state of the system, of the density matrix and the electronic density, as functions of the Lagrange multiplier, introduced to impose the constraint in the variational procedure, is developed and implemented in deMon2k. The first and second order corrections introduced are evaluated with the information contained in the ground state calculation, through the use of auxiliary density perturbation theory, while the value of the Lagrange multiplier at which the series is evaluated is determined from the amount of charge transferred. The energy differences between the ground and the constrained states obtained with the first and second order perturbative terms lie, in general, close to the variationally determined values. In addition, it is found that the results are practically independent of the exchange–correlation energy functional used and show rather small variations with respect to the basis set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kohn W, Sham LJ (1965) Phys Rev 140:1133–1138

    Article  Google Scholar 

  2. Hohenberg P, Kohn W (1964) Phys Rev B 136:B864–B871

    Article  Google Scholar 

  3. Parr RG, Yang WT (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  4. Wu Q, Van Voorhis T (2005) Phys Rev A 72:024502

    Article  Google Scholar 

  5. Wu Q, Van Voorhis T (2006) J Chem Theory Comput 2:765–774

    Article  CAS  PubMed  Google Scholar 

  6. Segal M, Singh M, Rivoire K, Difley S, Van Voorhis T, Baldo MA (2007) Nat Mater 6:374–378

    Article  CAS  PubMed  Google Scholar 

  7. Evans JS, Cheng CL, Van Voorhis T (2008) Phys Rev B 78:165108

    Article  Google Scholar 

  8. Wu Q, Kaduk B, Van Voorhis T (2009) J Chem Phys 130:034109

    Article  PubMed  Google Scholar 

  9. de la Lande A, Salahub DR (2010) J Mol Struct Theochem 943:115–120

    Article  Google Scholar 

  10. Van Voorhis T, Kowalczyk T, Kaduk B, Wang LP, Cheng CL, Wu Q (2010) Annu Rev Phys Chem 61:149–170

    Article  PubMed  Google Scholar 

  11. Difley S, Van Voorhis T (2011) J Chem Theory Comput 7:594–601

    Article  CAS  PubMed  Google Scholar 

  12. Kaduk B, Kowalczyk T, Van Voorhis T (2012) Chem Rev 112:321–370

    Article  CAS  PubMed  Google Scholar 

  13. Rezac J, Levy B, Demachy I, de la Lande A (2012) J Chem Theory Comput 8:418–427

    Article  CAS  PubMed  Google Scholar 

  14. Yost SR, Lee J, Wilson MWB, Wu T, McMahon DP, Parkhurst RR, Thompson NJ, Congreve DN, Rao A, Johnson K, Sfeir MY, Bawendi MG, Swager TM, Friend RH, Baldo MA, Van Voorhis T (2014) Nat Chem 6:492–497

    Article  CAS  PubMed  Google Scholar 

  15. de la Lande A, Gillet N, Chen SF, Salahub DR (2015) Arch Biochem Biophys 582:28–41

    Article  PubMed  Google Scholar 

  16. Ma PW, Dudarev SL (2015) Phys Rev B 91:054420

    Article  Google Scholar 

  17. Mangaud E, de la Lande A, Meier C, Desouter-Lecomte M (2015) Phys Chem Chem Phys 17:30889–30903

    Article  CAS  PubMed  Google Scholar 

  18. Rezac J, de la Lande A (2015) J Chem Theory Comput 11:528–537

    Article  CAS  PubMed  Google Scholar 

  19. Gillet N, Berstis L, Wu XJ, Gajdos F, Heck A, de la Lande A, Blumberger J, Elstner M (2016) J Chem Theory Comput 12:4793–4805

    Article  CAS  PubMed  Google Scholar 

  20. Turban DHP, Teobaldi G, O'Regan DD, Hine NDM (2016). Phys Rev B 93:165102.

  21. Holmberg N, Laasonen K (2017) J Chem Theory Comput 13:587–601

    Article  CAS  PubMed  Google Scholar 

  22. Carmona-Espíndola J, Flores-Moreno R, Köster AM (2010) J Chem Phys 133:084102

    Article  PubMed  Google Scholar 

  23. Shedge SV, Carmona-Espíndola J, Pal S, Köster AM (2010) J Phys Chem A 114:2357–2364

    Article  CAS  PubMed  Google Scholar 

  24. Calaminici P, Carmona-Espíndola J, Geudtner G, Köster AM (2012) Int J Quantum Chem 112:3252–3255

    Article  CAS  Google Scholar 

  25. Carmona-Espíndola J, Flores-Moreno R, Köster AM (2012) Int J Quantum Chem 112:3461–3471

    Article  Google Scholar 

  26. Shedge SV, Pal S, Köster AM (2012) Chem Phys Lett 552:146–150

    Article  CAS  Google Scholar 

  27. Geudtner G, Calaminici P, Carmona-Espíndola J, del Campo JM, Dominguez-Soria VD, Flores-Moreno R, Gamboa GU, Goursot A, Köster AM, Reveles JU, Mineva T, Vasquez-Perez JM, Vela A, Zuñiga-Gutierrez B, Salahub DR (2012) Wiley Interdiscip Rev Comput Mol Sci 2:548

    Article  CAS  Google Scholar 

  28. Handy NC, Tozer DJ (1998) Mol Phys 94:707–715

    Article  CAS  Google Scholar 

  29. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  30. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  31. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  32. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  33. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  34. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  35. Harihara PC, Pople JA (1973) Theor Chim Acta 28:213–222

    Article  Google Scholar 

  36. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:13126–13130

    Article  CAS  PubMed  Google Scholar 

  37. Calaminici P, Janetzko F, Köster AM, Mejía-Olvera R, Zúniga-Gutiérrez B (2007) J Chem Phys 126:044108

    Article  PubMed  Google Scholar 

  38. Hirshfeld FL (1977) Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  39. Köster AM, Flores-Moreno R, Reveles JU (2004) J Chem Phys 121:681–690

    Article  PubMed  Google Scholar 

  40. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  41. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  42. Dirac PAM (1930) Proc Camb Philos Soc 26:376–385

    Article  CAS  Google Scholar 

  43. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  44. Carmona-Espíndola J, Gázquez JL, Vela A, Trickey SB (2015) J Chem Phys 142:054105

    Article  PubMed  Google Scholar 

  45. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  46. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029–5036

    Article  CAS  Google Scholar 

  47. Adamo C, Scuseria GE, Barone V (1999) J Chem Phys 111:2889–2899

    Article  CAS  Google Scholar 

  48. Flores-Moreno R, Koster AM (2008) J Chem Phys 128:134105-1–134105-10

    Google Scholar 

  49. Flores-Moreno R, Carmona-Espíndola J, Köster AM (2015) AIP Conf Proc 1642:60–68

    Article  Google Scholar 

  50. Diercksen G, McWeeny R (1966) J Chem Phys 44:3554–3560

    Article  CAS  Google Scholar 

  51. McWeeny R (1968) Chem Phys Lett 1:567–568

    Article  CAS  Google Scholar 

  52. McWeeny R, Diercksen G (1968) J Chem Phys 49:4852–4856

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Laboratorio de Supercómputo y Visualización of Universidad Autónoma Metropolitana-Iztapalapa and the Laboratorio Nacional de Cómputo de Alto Desempeño (LANCAD) for the use of their facilities. We thank Conacyt for grant sinergia 1561802.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Carmona-Espíndola.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “20th deMon Developers Workshop”.

Appendix: Implementation in deMon2k of the first and second order corrections to the density matrix

Appendix: Implementation in deMon2k of the first and second order corrections to the density matrix

In order to describe the main aspects of the first and second order perturbation corrections to density matrix and to the electronic density, we will make use of a matrix language, since its implementation is done in a developer version of deMon2k [27] that is based on a Gaussian basis set.

Thus, to obtain the first order perturbed density, we use ADPT [22,23,24,25, 48, 49]. In this approximation the first order density is obtained through the McWeeny self-consistent perturbation theory [50,51,52],

$$P_{{\mu \nu }}^{{\left( \lambda \right)}} = 2\,\sum\limits_{i}^{{occ}} {\sum\limits_{a}^{{uno}} {\frac{{K_{{ia}}^{{\left( \lambda \right)}} }}{{\varepsilon _{i} - \varepsilon _{a} }}\,\left( {c_{{\mu i}} \,c_{{\nu a}} + c_{{\mu a}} \,c_{{\nu i}} } \right)} } ,$$
(30)

where the sum over \(i\) corresponds to the occupied molecular orbitals, while the sum over \(a\) corresponds to the unoccupied ones. In ADPT the first order Kohn–Sham matrix is obtained with the following expression,

$$K_{{ia}}^{{\left( \lambda \right)}} = \left\langle {i|(w_{{Ac}} ({\mathbf{r}}) - w_{{Do}} ({\mathbf{r}}))|a} \right\rangle + \sum\limits_{{\overline{k} }} {\left\langle {ia\left\| {\overline{k} } \right.} \right\rangle \,\left( {x_{{\overline{k} }}^{{\left( \lambda \right)}} + z_{{\overline{k} }}^{{\left( \lambda \right)}} } \right)} ,$$
(31)

where

$$z_{{\overline{k} }}^{{\left( \lambda \right)}} = \sum\limits_{{\overline{l} }} {\sum\limits_{{\overline{m} }} {\,G_{{\overline{k} \overline{l} }}^{{ - 1}} f_{{\overline{l} \overline{m} }} \,x_{{\overline{m} }}^{{\left( \lambda \right)}} } } ,$$
(32)

\(x_{{\overline{k} }}^{{\left( \lambda \right)}}\) is the \(k{\text{th}}\) element of the first order auxiliary density, \(f_{{\overline{l} \overline{m} }}\) represents the integral of the second variational derivative of the exchange–correlation functional with two auxiliary functions \(l\) and \(m\).

For the particular case of this new perturbation, we solved the ADPT equations as made in previous work [22,23,24,25, 48]

$$\left( {{\mathbf{G}} - 4{\mathbf{A}} - 4{\mathbf{A F}}} \right)\,{\mathbf{x}}^{{\left( \lambda \right)}} = 4{\mathbf{b}}^{{\left( \lambda \right)}} ,$$
(33)

where \({\mathbf{F}} = {\mathbf{G}}^{{ - 1}} {\mathbf{f}}\), \({\mathbf{G}}^{{ - 1}}\) is the inverse of the Coulomb matrix \({\mathbf{G}}\), and the elements of the Coulomb coupling matrix can be expressed as

$$A_{{\overline{k} \overline{l} }} = \sum\limits_{i}^{{occ}} {\sum\limits_{a}^{{uno}} {\frac{{\left\langle {\overline{k} \left\| {ia} \right.} \right\rangle \left\langle {ia\left\| {\overline{l} } \right.} \right\rangle }}{{\varepsilon _{i} - \varepsilon _{a} }}} } .$$
(34)

The elements of the perturbation vector \({\mathbf{b}}^{{\left( \lambda \right)}}\) contain the explicit form of the perturbation, that is

$$b_{{\overline{l} }}^{{\left( \lambda \right)}} = \sum\limits_{i}^{{occ}} {\sum\limits_{a}^{{uno}} {\frac{{\left\langle {i|(w_{{Ac}} ({\mathbf{r}}) - w_{{Do}} ({\mathbf{r}}))|a} \right\rangle }}{{\varepsilon _{i} - \varepsilon _{a} }}\left\langle {ia\left\| {\overline{l} } \right.} \right\rangle } } .$$
(35)

Once the first order auxiliary density coefficients have been obtained by solving Eq. (33), the first order Kohn–Sham matrix, Eq. (31), can be evaluated, and with this one, the first order density matrix can be determined.

Now, in the framework of ADPT the explicit form of the second order perturbed density matrix is given by [25, 49]

$$P_{{\mu \nu }}^{{\left( {\lambda \lambda } \right)}} = 2\,P_{{\mu \nu }}^{{\left( {\lambda ,\lambda } \right)}} + 2\,\sum\limits_{i}^{{occ}} {\sum\limits_{a}^{{uno}} {\frac{{K_{{ia}}^{{\left( {\lambda \lambda } \right)}} }}{{\varepsilon _{i} - \varepsilon _{a} }}\,\left( {c_{{\mu i}} \,c_{{\nu a}} + c_{{\mu a}} \,c_{{\nu i}} } \right)} }$$
(36)

This expression was derived to obtain third derivatives in the energy, required for the calculation of first hyperpolarizabilities. However, it was not implemented in its explicit form, because the Wigner’s 2n + 1 rule allowed to calculate third derivatives of the energy in terms of first order densities. Here we illustrate how the implementation of the explicit form of Eq. (36) was performed to obtain second order densities. The first term in the right-hand side of this expression depends on the following first order densities,

$${\mathbf{P}}_{{}}^{{\left( {\lambda ,\lambda } \right)}} = {\mathbf{P}}_{{oo}}^{{\left( {\lambda ,\lambda } \right)}} + {\mathbf{P}}_{{uu}}^{{\left( {\lambda ,\lambda } \right)}} + {\mathbf{P}}_{{ou}}^{{\left( {\lambda ,\lambda } \right)}} + {\mathbf{P}}_{{uo}}^{{\left( {\lambda ,\lambda } \right)}} .$$
(37)

Now, in order to simplify the explicit form of these matrices, one can introduce the transformation matrix,

$$W_{{\mu \nu }}^{{(\lambda )}} = \,\sum\limits_{i}^{{occ}} {\sum\limits_{a}^{{uno}} {\frac{{K_{{ia}}^{{\left( \lambda \right)}} }}{{\varepsilon _{i} - \varepsilon _{a} }}\,c_{{\mu i}} \,c_{{\nu a}} } } ,$$
(38)

and its transpose, as

$$W_{{\mu \nu }}^{{(\lambda )\dag }} = \,\sum\limits_{i}^{{occ}} {\sum\limits_{a}^{{uno}} {\frac{{K_{{ia}}^{{\left( \lambda \right)}} }}{{\varepsilon _{i} - \varepsilon _{a} }}\,c_{{\mu a}} \,c_{{\nu i}} } } .$$
(39)

The occupied-occupied block of Eq. (37) is expressed as follows in terms of this transformation matrix,

$${\mathbf{P}}_{{oo}}^{{\left( {\lambda ,\lambda } \right)}} = - {\mathbf{W}}^{{(\lambda )}} \,{\mathbf{S}}\,{\mathbf{W}}^{{(\lambda )\dag }} - {\mathbf{W}}^{{(\lambda )}} \,{\mathbf{S}}\,{\mathbf{W}}^{{(\lambda )\dag }} .$$
(40)

where \({\mathbf{S}}\) corresponds to the overlap matrix. The unoccupied-unoccupied block is calculated as

$${\mathbf{P}}_{{uu}}^{{\left( {\lambda ,\lambda } \right)}} = {\mathbf{W}}^{{(\lambda )\dag }} \,{\mathbf{S}}\,{\mathbf{W}}^{{(\lambda )}} + {\mathbf{W}}^{{(\lambda )\dag }} \,{\mathbf{S}}\,{\mathbf{W}}^{{(\lambda )}} ,$$
(41)

while the occupied-unoccupied block is given by

$${\mathbf{P}}_{{ou}}^{{(\lambda ,\lambda )}} = \, - \sum\limits_{i}^{{occ}} {\sum\limits_{a}^{{uno}} {\frac{{\,2\,\,\Omega _{{ia}}^{{\left( {\lambda ,\lambda } \right)}} \,}}{{\varepsilon _{i} - \varepsilon _{a} }}\,{\mathbf{c}}_{i}^{{}} \,{\mathbf{c}}_{a}^{\dag } } } .$$
(42)

Here, \({\mathbf{c}}_{i}^{{}}\) is a vector whose elements are the coefficients of the molecular orbital \(i\), equivalently for \({\mathbf{c}}_{a}^{{}}\), and

$$\Omega _{{ia}}^{{\left( {\lambda ,\lambda } \right)}} = {\mathbf{c}}_{i}^{\dag } \left( {{\mathbf{K}}^{{(\lambda )}} \,{\mathbf{W}}^{{(\lambda )}} \,{\mathbf{S}} - {\mathbf{S}}\,{\mathbf{W}}^{{(\lambda )}} \,{\mathbf{K}}^{{(\lambda )}} } \right){\mathbf{c}}_{a}^{{}} ,$$
(43)

and the unoccupied-occupied block of Eq. (37) is given by

$${\mathbf{P}}_{{uo}}^{{(\lambda ,\lambda )}} = {\mathbf{P}}_{{ou}}^{{(\lambda ,\lambda )\dag }} .$$
(44)

Now, the second term of Eq. (36) depends on the second order Kohn–Sham matrix, which can be expressed as

$$K_{{ia}}^{{\left( {\lambda \lambda } \right)}} = \sum\limits_{{\overline{k} }} {\left\langle {ia\left\| {\overline{k} } \right.} \right\rangle \,\left( {x_{{\overline{k} }}^{{\left( {\lambda ,\lambda } \right)}} + \sum\limits_{{\overline{l} }} {\left( {{\mathbf{1}} + {\mathbf{G}}^{{ - 1}} {\mathbf{f}}} \right)_{{\overline{k} \overline{l} }} x_{{\overline{l} }}^{{\left( {\lambda \lambda } \right)}} } } \right)} ,$$
(45)

where \({\mathbf{x}}^{{\left( {\lambda ,\lambda } \right)}}\) depends on first order densities,

$$x_{{\overline{k} }}^{{\left( {\lambda ,\lambda } \right)}} = \sum\limits_{{\overline{l} }} {\sum\limits_{{\overline{m} }} {\sum\limits_{{\overline{n} }} {G_{{\overline{k} \overline{l} }}^{{ - 1}} g_{{\overline{l} \overline{m} \overline{n} }} x_{{\overline{m} }}^{{\left( \lambda \right)}} x_{{\overline{n} }}^{{\left( \lambda \right)}} } \,} } ,$$
(46)

and \(g_{{\overline{l} \overline{m} \overline{n} }}\) is the integral of the third variational derivative of the exchange–correlation functional with three auxiliary functions \(l\), \(m\) and \(n\).

In the calculation of first hyperpolarizabilities, this third variational derivative was integrated with three first order densities. The second order auxiliary coefficients, \({\mathbf{x}}^{{\left( {\lambda \lambda } \right)}}\), are obtained by solving the system of equations,

$$\left( {{\mathbf{G}} - 4{\mathbf{A}} - 4{\mathbf{A G}}^{{ - 1}} {\mathbf{f}}} \right)\,{\mathbf{x}}^{{\left( {\lambda \lambda } \right)}} = {\mathbf{b}}^{{\left( {\lambda ,\lambda } \right)}}$$
(47)

with

$$b_{{\overline{k} }}^{{\left( {\lambda ,\lambda } \right)}} = 2\,\sum\limits_{\mu } {\sum\limits_{\nu } {P_{{\mu \nu }}^{{\left( {\lambda ,\lambda } \right)}} \left\langle {\mu \nu \left\| {\overline{k} } \right.} \right\rangle } } + 4\,\sum\limits_{{\overline{l} }} {A_{{\overline{k} \overline{l} }} x_{{\overline{l} }}^{{\left( {\lambda ,\lambda } \right)}} }$$
(48)

Thus, after solving Eq. (47) one can obtain the explicit elements of the second order Kohn–Sham matrix, Eq. (45), and once the second order density matrix is determined, one can incorporate the first and second order corrections to the density.

It is important to note that the present derivation is limited to the local density (LDA) and generalized gradient (GGA) approximations to the exchange–correlation energy functionals, since in the case of hybrid functionals with a fraction of exact exchange, one would have to include additional terms for the calculation of the first and second order perturbation corrections that have not been considered in the previous equations.

A relevant aspect of the present approach is that it may be readily implemented in any code that includes the calculation of polarizabilities and hyperpolarizabilities, through simply replacing the electric field by the term associated to the constrained charge transfer, \((w_{{Ac}} ({\mathbf{r}}) - w_{{Do}} ({\mathbf{r}}))\), which is what we did to arrive at Eqs. (31) and (35).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmona-Espíndola, J., Gázquez, J.L. Perturbation approach to constrained electron transfer in density functional theory. Theor Chem Acc 140, 96 (2021). https://doi.org/10.1007/s00214-021-02798-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02798-x

Keywords

Navigation