Skip to main content
Log in

Static and dynamic polarizabilities of oligothiophenes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A comparative study of static and dynamical polarizabilities of small oligothiophenes until the hexamer is performed employing gradient-corrected and hybrid functionals within auxiliary density functional theory. Because the dynamical polarizabilities are calculated at the experimental wavelength of 589 nm, a direct comparison between experiment and theory is possible. For the smaller oligothiophenes until the tetramer, very good agreement between theory and experiment was found. The calculated dynamical polarizabilities of the pentamer and hexamer oligothiophenes are affected by a too low-lying excited state due to the employed gradient-corrected functional. It is shown that this artificial pole affects mainly the longitudinal component of the polarizability tensor. Our analysis suggests that success and failure of gradient-corrected functionals in the calculation of dynamical polarizabilities depend critical on the corresponding Kohn–Sham eigenvalue spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dallakyan S, Chandross M, Mazumdar S (2003) Phys Rev B 68:75204

    Article  Google Scholar 

  2. Zhao M, Singh BP, Prasad PN (1988) J Chem Phys 89:5535

    Article  CAS  Google Scholar 

  3. Thienpont H, Rikken GLJA, Meijer EW, ten Hoeve W, Wynberg H (1990) Phys Rev Lett 65:2141

    Article  CAS  Google Scholar 

  4. Smith MB, March J (2007) March’s advanced organic chemistry, 6th edn. Wiley, New Jersey

    Google Scholar 

  5. Mishra A, Fischer MKR, Bäuerle P (2009) Angew Chem Int Ed 48:2474

    Article  CAS  Google Scholar 

  6. Letizia JA, Rivnay J, Facchetti A, Ratner MA, Marks TJ (2010) Adv Funct Mater 20:50

    Article  CAS  Google Scholar 

  7. Holmes AB, Bradley DDC, Brown AR, Bum PL, Burroughes JH, Friend RH, Greenham NC, Gymer RW, Halliday DA, Jackson RW, Kraft A, Martens JHF, Pichler K, Samuel IDW (1993) Synt Met 57:4031

    Article  CAS  Google Scholar 

  8. Karg S, Riess W, Meier M, Schwörer M (1993) Synt Met 57:4186

    Article  CAS  Google Scholar 

  9. Schwörer M (1994) Phys Bl 1:52

    Article  Google Scholar 

  10. Roth S, Graupner W (1993) Synt Met 57:3623

    Article  CAS  Google Scholar 

  11. Willander M, Assadi A, Svenson C (1993) Synt Met 57:4099

    Article  CAS  Google Scholar 

  12. Ohmori Y, Muro K, Yoshino K (1993) Synt Met 57:4111

    Article  CAS  Google Scholar 

  13. Banerjee A, Sen KD, Garza J, Vargas R (2002) J Chem Phys 116:4054

    Article  CAS  Google Scholar 

  14. Hohenberg P, Kohn W (1964) Phys Rev 36:B864

    Article  Google Scholar 

  15. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  16. Bartlett RJ, Musial M (2007) Rev Mod Phys 79:291

    Article  CAS  Google Scholar 

  17. Verma P, Perera A, Morales JA (2016) Mol Phys 114:547

    Article  CAS  Google Scholar 

  18. Fournier R (1990) J Chem Phys 92:5422

    Article  CAS  Google Scholar 

  19. Komornicki A, Fitzgerald G (1993) J Chem Phys 98:1398

    Article  CAS  Google Scholar 

  20. Colwell SM, Murray CW, Handy NC, Amos RD (1993) Chem Phys Lett 210:261

    Article  CAS  Google Scholar 

  21. Weber V, Daul C (2003) Chem Phys Lett 370:99

    Article  CAS  Google Scholar 

  22. Lacivita V, Rerat M, Orlando R, Ferrero M, Dovesi R (2012) J Chem Phys 136:114101

    Article  Google Scholar 

  23. Köster AM, Reveles JU, del Campo JM (2004) J Chem Phys 121:3417

    Article  Google Scholar 

  24. Dunlap BI, Conolly JWD, Sabin JR (1979) J Chem Phys 71:4993

    Article  CAS  Google Scholar 

  25. Mintmire JW, Dunlap BI (1982) Phys Rev A 25:88

    Article  CAS  Google Scholar 

  26. Dunlap BI, Rösch N, Trickey SB (2010) Mol Phys 108:3167

    Article  CAS  Google Scholar 

  27. Mejía-Rodríguez D, Köster AM (2014) J Chem Phys 141:124114

    Article  Google Scholar 

  28. Mejía-Rodríguez D, Huang X, del Campo JM, Köster AM (2015) Adv Quantum Chem 71:41

    Article  Google Scholar 

  29. Dodds JL, McWeeny R, Sadlej AJ (1977) Mol Phys 34:1779

    Article  CAS  Google Scholar 

  30. McWeeny R (2001) Methods of molecular quantum mechanics, 2nd edn. Academic Press, London

    Google Scholar 

  31. Flores-Moreno R, Köster AM (2008) J Chem Phys 128:134105

    Article  Google Scholar 

  32. Carmona-Espíndola J, Flores-Moreno R, Köster AM (2010) J Chem Phys 133:084102

    Article  Google Scholar 

  33. Eirola T, Nevanlinna O (1989) Linear Algebra Appl 121:511

    Article  Google Scholar 

  34. Yang UM, Gallivan KA (1995) Appl Numer Math 19:287

    Article  Google Scholar 

  35. Mejía-Rodríguez D, Delgado-Venegas RI, Calaminici P, Köster AM (2015) J Chem Theory Comput 11:1493

    Article  Google Scholar 

  36. Calaminici P, Carmona-Espíndola J, Geudtner G, Köster AM (2012) Int J Quant Chem 112:3252

    Article  CAS  Google Scholar 

  37. Gamboa GU, Calaminici P, Geudtner G, Köster AM (2008) J Phys Chem A 112:11969

    Article  CAS  Google Scholar 

  38. Carmona-Espíndola J, Flores-Moreno R, Köster AM (2012) Int J Quant Chem 112:3461

    Article  Google Scholar 

  39. Shedge SV, Pal S, Köster AM (2011) Chem Phys Lett 510:185

    Article  CAS  Google Scholar 

  40. Flores-Moreno R, Melin J, Ortiz JV, Merino G (2008) J Chem Phys 129:224105

    Article  Google Scholar 

  41. Flores-Moreno R (2010) J Chem Theory Comput 6:48

    Article  CAS  Google Scholar 

  42. Champagne B, Mosley DH, André JM (1994) J Chem Phys 100:2034

    Article  CAS  Google Scholar 

  43. Köster AM, Geudtner G, Calaminici P, Casida ME, Dominguez VD, Flores-Moreno R, Gamboa GU, Goursot A, Heine T, Ipatov A, Janetzko F, del Campo JM, Reveles JU, Vela A, Zuñiga-Gutierrez B, Salahub DR (2011) deMon2k, Version 3. The deMon developers, Cinvestav, Mexico-City

  44. Domínguez-Soria VD, Geudtner G, Morales JL, Calaminici P, Köster AM (2009) J Chem Phys 131:124102

    Article  Google Scholar 

  45. Flores-Moreno R (2006) Analytic Derivatives in LCGTO-DFT Pseudo-Potential Methods with Auxiliary Functions, PhD thesis, CINVESTAV, Mexico City

  46. Calaminici P, Jug K, Köster AM (1998) J Chem Phys 109:7756

    Article  CAS  Google Scholar 

  47. Karne AS, Vaval N, Pal S, Vázquez-Pérez JM, Köster AM, Calaminici P (2015) Chem Phys Lett 635:168

    Article  CAS  Google Scholar 

  48. Kurtz HA, Stewart JJP, Dieter KM (1990) J Comp Chem 11:82

    Article  CAS  Google Scholar 

  49. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  50. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  51. Calaminici P, Köster AM, Vela A, Jug K (2000) J Phys Chem 113:2199

    Article  CAS  Google Scholar 

  52. Guan J, Duffy P, Carter JT, Chong DP, Casida KC, Casida ME, Wrinn M (1993) J Chem Phys 98:4753

    Article  CAS  Google Scholar 

  53. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  54. Calaminici P, Jug K, Köster AM, Ingamells VE, Papadopoulos MG (2000) J Chem Phys 112:6301

    Article  CAS  Google Scholar 

  55. Herzberg G (1966) Electronic spectra and electronic structure of polyatomic molecules. Van Nostrand, New York

    Google Scholar 

  56. Bak B, Christensen D, Hansen-Nygaard L, Rastrup-Andersen J (1961) J Mol Spect 7:58

    Article  CAS  Google Scholar 

  57. Brown RD, Burden FR, Godfrey PD (1968) J Mol Spect 25:58

    Article  Google Scholar 

  58. Zope RR, Baruah T, Pederson MR, Dunlap BI (2008) Int J Quantum Chem 108:307

    Article  CAS  Google Scholar 

  59. Sekino H, Bartlett RJ (1993) J Chem Phys 98:3022

    Article  CAS  Google Scholar 

  60. van Gisbergen SJA, Schipper PRT, Gritsenko OV, Baerends EJ, Snijders JG, Champagne B, Kirtman B (1999) Phys Rev Lett 83:694

    Article  Google Scholar 

  61. Hammond JR, Kowalski K, deJong WA (2007) J Chem Phys 127:144105

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the CONACyT Projects CB-179409 and CB-252658 and the bilateral México-India Project 163616. J.N.P.M, F.A.D and R.I.D.V gratefully acknowledge CONACyT support by the fellowship 407769, 421457 and 347383 respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Calaminici.

Additional information

Published as part of the special collection of articles “Festschrift in honour of A. Vela”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedroza-Montero, J.N., Delesma, F.A., Delgado-Venegas, R.I. et al. Static and dynamic polarizabilities of oligothiophenes. Theor Chem Acc 135, 230 (2016). https://doi.org/10.1007/s00214-016-1984-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1984-8

Keywords

Navigation