Skip to main content
Log in

A first-principles investigation of histidine and its ionic counterparts

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Histidine (His) is an essential amino acid found to be a key residue in the active site and catalytic domain of many enzymes. Understanding the conformational preferences and the role of non-covalent interactions in the stability of this amino acid is of outstanding relevance in biological systems. The systematic study of the conformational space of His and its ionized counterparts in two tautomeric forms has been carried out using density functional theory. This study identified 33, 7, 9 and 11 distinct conformations on the potential energy surface (PES) of the His(NτH) tautomer in its neutral, zwitterionic, anionic and cationic states, respectively. On the other hand, the PES of the His(NπH) tautomer features 30, 12, 12 and 5 distinct conformers for the neutral, anionic, cationic and zwitterionic forms, respectively. Atoms-in-molecules analysis was employed to identify the nature of various non-covalent interactions such as hydrogen bonds, NH–π, OH–π and CH–O interactions. The conformers with NH–O hydrogen bonds are more stable than the conformers with other non-covalent interactions. In more general terms, the ability to form non-covalent interactions is a key determinant for conformational preferences of His and its ionic counter parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116:2775

    Article  CAS  Google Scholar 

  2. Desfrancüois C, Carles S, Schermann JP (2000) Weakly bound clusters of biological interest. Chem Rev 100:3943

    Article  Google Scholar 

  3. Muller JD, McMahon BH, Chien EYT, Sligar SG, Nienhaus GU (1036) Connection between the taxonomic substates and protonation of histidines 64 and 97 in carbonmonoxy myoglobin. Biophys J 1999:77

    Google Scholar 

  4. Mangs H, Sui GC, Wiman B (2000) PAI-1 stability: the role of histidine residues. FEBS Lett 475:192

    Article  CAS  Google Scholar 

  5. Tjalsma H, Stover AG, Driks A, Venema G, Bron S, DijlJ M (2000) Conserved serine and histidine residues are critical for activity of the ER-type signal peptidase SipW of Bacillus subtilis. J Biol Chem 275:25102

    Article  CAS  Google Scholar 

  6. Gubba S, Cipriano V, Musser JM (2000) Replacement of histidine 340 with alanine inactivates the group a streptococcus extracellular cysteine protease virulence factor. Infect Immunol 68:3716

    Article  CAS  Google Scholar 

  7. Tseng CC, Miyamoto M, Ramalingam K, Hemavathy KC, Levine MJ, Ramasubbu N (1999) The roles of histidine residues at the starch-binding site in streptococcal-binding activities of human salivary amylase. Arch Oral Biol 44:119

    Article  CAS  Google Scholar 

  8. Wolff N, Deniau C, Letoffe S, Simenel C, Kumar V, Stojiljkovic I, Wandersman C, Delepierre M, Lecroisey A (2002) Histidine pKa shifts and changes of tautomeric states induced by the binding of gallium-protoporphyrin IX in the Hemophore HasASM. Protein Sci 11:757

    Article  CAS  Google Scholar 

  9. Harrison AG (1977) The gas-phase basicities and proton affinities of amino acids and peptides. Mass Spectrom Rev 16:201

    Article  Google Scholar 

  10. Rizzo TR, Park YD, Peteanu LA, Levy DH (1986) The electronic spectrum of amino-acid tryptophan in gas phase. J Chem Phys 84:2534

    Article  CAS  Google Scholar 

  11. Lindinger A, Toennies JP, Vilesov AF (1999) High resolution vibronic spectra of the amino acids tryptophan and tyrosine in 0.38 K cold helium droplets. J Chem Phys 110:1429

    Article  CAS  Google Scholar 

  12. Martinez SJ III, Alfano JC, Levy DH (1992) The electronic spectroscopy of the amino acids tyrosine and phenylalanine in a supersonic jet. J Mol Spectrosc 156:421

    Article  CAS  Google Scholar 

  13. Li L, Lubman DI (1988) Analytical jet spectroscopy of tyrosine and its analogs using a pulsed laser desorption volatilization method. Appl Spectrosc 42:418

    Article  CAS  Google Scholar 

  14. Caswell DS, Spiro TG (1986) Ultraviolet resonance Raman spectroscopy of imidazole, histidine, and Cu(imidazole) +24 : implications for protein studies. J Am Chem Soc 108:6470

    Article  CAS  Google Scholar 

  15. Feyer V, Plekan O, Richter R, Coreno M, Prince KC, Carravetta V (2008) Core level study of alanine and threonine. J Phys Chem A 112:7806

    Article  CAS  Google Scholar 

  16. Maul R, Preuss M, Ortmann F, Hannewald K, Bechstedt F (2007) Electronic excitations of glycine, alanine, and cysteine conformers from first-principles calculations. J Phys Chem A 111:4370

    Article  CAS  Google Scholar 

  17. Purushotham U, Sastry GN (1093) Exploration of conformations and quantum chemical investigation of l-tyrosine dimers, anions, cations and zwitterions: a DFT study. Theor Chem Acc 2012:131

    Google Scholar 

  18. Purushotham U, Vijay D, Sastry GN (2012) A computational investigation and the conformational analysis of dimers, anions, cations, and zwitterions of l-phenylalanine. J Comput Chem 33:44

    Article  CAS  Google Scholar 

  19. Purushotham U, Sastry GN (2013) A comprehensive conformational analysis of tryptophan, its ionic and dimeric forms. J Comput Chem 35:595

    Article  Google Scholar 

  20. Bhattacharyya R, Saha RP, Samanta U, Chakrabarti P (2003) Geometry of interaction of the histidine ring with other planar and basic residues. J Proteome Res 2:255

    Article  CAS  Google Scholar 

  21. Vijay D, Sastry GN (2010) The cooperativity of cation–π and π–π interactions. Chem Phys Lett 485:235

    Article  CAS  Google Scholar 

  22. Chourasia M, Sastry GM, Sastry GN (2011) Aromatic–aromatic interactions database, A2ID: an analysis of aromatic π-networks in proteins. Int J Biol Macromol 48:540

    Article  CAS  Google Scholar 

  23. Premkumar JR, Vijay D, Sastry GN (2012) The significance of the alkene size and the nature of the metal ion in metal–alkene complexes: a theoretical study. Dalton Trans 41:4965

    Article  CAS  Google Scholar 

  24. Umadevi D, Panigrahi S, Sastry GN (2014) Noncovalent interaction of carbon nanostructures. Acc Chem Res 47:2574

    Article  CAS  Google Scholar 

  25. Mahadevi AS, Sastry GN (2013) Cation–π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 113:2100

    Article  CAS  Google Scholar 

  26. Reddy AS, Sastry GN (2005) Cation [M = H+, Li+, Na+, K+, Ca2 +, Mg2 +, NH4 +, and NMe +4 ] interactions with the aromatic motifs of naturally occurring amino acids: a theoretical study. J Phys Chem A 109:8893

    Article  CAS  Google Scholar 

  27. Reddy AS, Sastry GM, Sastry GN (2007) Cation–aromatic database. Proteins Struct Funct Bioinform 67:1179

    Article  CAS  Google Scholar 

  28. Reddy AS, Vijay D, Sastry GM, Sastry GN (2006) From subtle to substantial: role of metal ions on pi–pi interactions. J Phys Chem B 110:2479

    Article  CAS  Google Scholar 

  29. Vijay D, Zipse H, Sastry GN (2008) On the cooperativity of cation–pi and hydrogen bonding interactions. J Phys Chem B 112:8863

    Article  CAS  Google Scholar 

  30. Saha S, Sastry GN (2015) Cooperative or anti cooperative: how non-covalent interactions influence each other. J Phys Chem B 119:11121

    Article  CAS  Google Scholar 

  31. Rao JS, Zipse H, Sastry GN (2009) Explicit solvent effect on cation–pi interactions: a first principle investigation. J Phys Chem B 113:7225

    Article  CAS  Google Scholar 

  32. Reddy AS, Zipse H, Sastry GN (2007) Cation–pi interactions of bare and coordinatively saturated metal ions: contrasting structural and energetic characteristics. J Phys Chem B 111:11546

    Article  CAS  Google Scholar 

  33. Sharma B, Rao JS, Sastry GN (1971) Effect of solvation on ion binding to imidazole and methylimidazole. J Phys Chem A 2011:115

    Google Scholar 

  34. Vijay D, Sastry GN (2008) Exploring the size dependence of cyclic and acyclic pi-systems on cation–pi binding. Phys Chem Chem Phys 10:582

    Article  CAS  Google Scholar 

  35. Mahadevi AS, Sastry GN (2011) A theoretical study on interaction of cyclopentadienyl ligand with alkali and alkaline earth metals. J Phys Chem B 115:703

    Article  CAS  Google Scholar 

  36. Sharma B, Srivastava HK, Gayatri G, Sastry GN (2015) Energy decomposition analysis of cation–π, metal ion-lone pair, hydrogen bonded, charge assisted hydrogen bonded and π–π interactions. J Comp Chem 36:529

    Article  CAS  Google Scholar 

  37. Haung Z, Yu W, Li Z (2006) First-principle studies of gaseous aromatic amino acid histidine. THEOCHEM 801:7

    Article  Google Scholar 

  38. Tehrani ZA, Tavasoli E, Fattahi A (2010) Conformational behavior and potential energy profile of gaseous histidine. THEOCHEM 960:73

    Article  CAS  Google Scholar 

  39. Rijs AM, Ohanessian G, Oomens J, Meijer G, von Helden G, Compagnon I (2010) Internal proton transfer leading to stable zwitterionic structures in a neutral isolated peptide. Angew Chem Int Ed 49:2332

    Article  CAS  Google Scholar 

  40. Wei Y, Sateesh B, Maryasin B, Sastry GN, Zipse H (2009) The performance of computational techniques in locating the charge separated intermediates in organocatalytic transformations. J Comp Chem 30:2617

    Article  CAS  Google Scholar 

  41. Nielsen PA, Norrby PO, Liljefors T, Rega N, Barone V (2000) Quantum mechanical conformational analysis of β-alanine zwitterion in aqueous solution. J Am Chem Soc 122:3151

    Article  CAS  Google Scholar 

  42. Jockusch RA, Lemoff AS, Williams ER (2001) Effect of metal ion and water coordination on the structure of a gas-phase amino acid. J Am Chem Soc 123:12255

    Article  CAS  Google Scholar 

  43. Tajkhorshid E, Jalkanen KJ, Suhai S (1998) Structure and vibrational spectra of the zwitterion l-alanine in the presence of explicit water molecules: a density functional analysis. J Phys Chem B 102:5899

    Article  CAS  Google Scholar 

  44. Anderson DE, Becktel WJ, Dahlquist FW (1990) pH-induced denaturation of proteins: a single salt bridge contributes 3–5 kcal/mol to the free energy of folding of T4 lysozyme. Biochemistry 29:2403

    Article  CAS  Google Scholar 

  45. Forsyth WR, Antosiewiez JM, Robertson AD (2002) Empirical relationships between protein structure and carboxyl pKa values in proteins. Proteins 48:388

    Article  CAS  Google Scholar 

  46. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. W. H. Freeman, New York

    Google Scholar 

  47. Jarrold MF (2000) Peptides and proteins in the vapor phase. Annu Rev Phys Chem 51:179

    Article  CAS  Google Scholar 

  48. Green MK, Lebrilla CB (1998) The role of proton-bridged intermediates in promoting hydrogen–deuterium exchange in gas-phase protonated diamines, peptides and proteins. Int J Mass Spectrom Ion Proc 175:15

    Article  CAS  Google Scholar 

  49. Bliznyuk AA, Schaefer HF III, Amster IJ (1993) J Am Chem Soc 115:5149

    Article  CAS  Google Scholar 

  50. Kovacevic B, Rozman M, Klasinc L, Srzic D, Maksic ZB, Yanez M (2005) Gas-phase structure of protonated histidine and histidine methyl ester: combined experimental mass spectrometry and theoretical ab initio study. J Phys Chem A 109:8329

    Article  CAS  Google Scholar 

  51. O’Hair RAJ, Bowie JH, Gronert S (1992) Gas phase acidities of the α amino acids. Int J Mass Spectrom Ion Proc 117:23

    Article  Google Scholar 

  52. Woo HK, Lau KC, Wang XB, Wang LS (2006) Observation of cysteine thiolate and –S···H–O intermolecular hydrogen bond. J Phys Chem A 110:12603

    Article  CAS  Google Scholar 

  53. Tian Z, Kass SR (2008) J Am Chem Soc 130:10842

    Article  CAS  Google Scholar 

  54. Haung Z, Lin Z, Song C (2007) Protonation processes and electronic spectra of histidine and related ions. J Phys Chem A 111:4340

    Article  Google Scholar 

  55. Suite 2011 (2011) Maestro, version 9.2. Schrodinger, LLC/Accelrys Software Inc, New York

  56. Dassault Systèmes BIOVIA (2016) Discovery studio modeling environment, release 3.5. Accelrys Software Inc., San Diego

  57. Canses E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032

    Article  Google Scholar 

  58. Tomasi J, Mennucci B, Camm R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999

    Article  CAS  Google Scholar 

  59. Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  60. Biegler-Konig F, Schonbohm J, Derdau R, Bayles D, Bader RFW (2000) AIM 2000, version 2.0, Bielefeld, Germany

  61. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA,. Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega C, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Knox X, Li JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision D.1. Gaussian, Inc., Pittsburgh

  62. Jurecka P, Sponer J, Cerny J, Hobza P (1985) Phys Chem Chem Phys 2006:8

    Google Scholar 

  63. Cybulski SM, Lytle ML (2007) J Chem Phys 127:141102

    Article  Google Scholar 

  64. Bermudez C, Mata J, Cabezas C, Alonso JL (2014) Tautomers in neutral histidine. Angew Chem Int Ed 53:11015

    Article  CAS  Google Scholar 

  65. Stepanian SG, Reva ID, Radchenko ED, Adamowicz L (1999) Combined matrix-isolation infrared and theoretical DFT and ab initio study of the nonionized valine conformers. J Phys Chem A 103:4404

    Article  CAS  Google Scholar 

  66. Jensen JH, Gordon MS (1995) On the number of water molecules necessary to stabilize the glycine zwitterion. J Am Chem Soc 117:8159

    Article  CAS  Google Scholar 

  67. Jensen JH, Gordon MS (1996) Understanding the hydrogen bond using quantum chemistry. Acc Chem Res 29:536

    Article  Google Scholar 

  68. Ebrahimi A, Mostafa HK, Gholipour AR, Masoodi HR (2009) Interaction between uracil nucleobase and phenylalanine amino acid: the role of sodium cation in stacking. Theor Chem Acc 124:115

    Article  CAS  Google Scholar 

  69. Forbes MW, Bush MF, Polfer NC, Oomens J, Dunbar RC, Williams ER, Jockusch RA (2007) Infrared spectroscopy of arginine cation complexes: direct observation of gas-phase zwitterions. J Phys Chem A 111:11759

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank CSIR 12th five-year plan GENESIS for financial support. GNS thanks DST for the support in the form of J. C. Bose National Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Narahari Sastry.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purushotham, U., Zipse, H. & Sastry, G.N. A first-principles investigation of histidine and its ionic counterparts. Theor Chem Acc 135, 174 (2016). https://doi.org/10.1007/s00214-016-1926-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1926-5

Keywords

Navigation