Skip to main content
Log in

Mechanism for Ag (I)-catalyzed decarboxylative chlorination: a DFT study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Ag(I)-catalyzed decarboxylative chlorination of the carboxylic acid with t-BuOCl has been given a systematic theoretical study. According to the calculations, the catalytic cycle was assumed to include four steps: proton-coupled two-electron transfer, oxidative decarboxylation, formation of Ag(II)–Cl (chlorine source) and chlorine abstraction. It was first suggested that this kind of reaction is driven by the proton-coupled two-electron transfer, which leads to the formation of Ag(II) species, carboxylate, chloridion and t-BuOH. Then the oxidative decarboxylation and formation of Ag(II)–Cl take place at the same time. The resultant alkyl radical from the former abstracts the chlorine atom of Ag(II)–Cl to give the final product. Based on a comparison of the reactivities among different carboxylic acids, the oxidative decarboxylation was established as the rate-determining step. Moreover, it proceeds preferentially in a concerted dissociative electron transfer pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Johnson RG, Ingham RK (1956) Chem Rev 56:219–269

    Article  CAS  Google Scholar 

  2. Sheldon RA, Kochi JK (1972) Org React 19:279–421

    CAS  Google Scholar 

  3. Crich D (1991) Comp Org Synth 7:717–734

    Article  Google Scholar 

  4. Hunsdiecker H, Hunsdiecker C (1942) Ber 75B:291–297

    CAS  Google Scholar 

  5. Cristol SJ, Firth WCJ (1961) J Org Chem 26:280

    Article  CAS  Google Scholar 

  6. Cocepción JI, Francisco CG, Freire R, Hernández R, Salazar JA, Suárez E (1986) J Org Chem 51:402–404

    Article  Google Scholar 

  7. Kochi JK (1965) J Am Chem Soc 87:2500–2502

    Article  CAS  Google Scholar 

  8. Barton DHR, Crich D, Motherwell WB (1983) Tetrahedron Lett 24:4979–4982

    Article  CAS  Google Scholar 

  9. Wang Z, Zhu L, Yin F, Su Z, Li ZD, Li CZ (2012) J Am Chem Soc 134:4258–4263

    Article  CAS  Google Scholar 

  10. Shigemitsu Y, Odaira Y, Tsutsumi S (1965) Bull Chem Soc Jpn 38:1450–1455

    Article  CAS  Google Scholar 

  11. Li ZD, Song L, Li CZ (2013) J Am Chem Soc 135:4640–4643

    Article  CAS  Google Scholar 

  12. Zhang C, Li Z, Zhu L, Yu L, Wang Z, Li CZ (2013) J Am Chem Soc 135:14082–14085

    Article  CAS  Google Scholar 

  13. Yin F, Wang Z, Li Z, Li CZ (2012) J Am Chem Soc 134:10401–10404

    Article  CAS  Google Scholar 

  14. Jones GO, Li PU, Houk KN, Buchwald SL (2010) J Am Chem Soc 132:6205–6213

    Article  CAS  Google Scholar 

  15. Yu HZ, Jiang YY, Fu Y, Liu L (2010) J Am Chem Soc 132:18078–18091

    Article  CAS  Google Scholar 

  16. Raymond KS, Grafton AK, Wheeler RA (1997) J Phys Chem B 101:623–631

    Article  CAS  Google Scholar 

  17. Baik MH, Silverman JS, Yang IV, Ropp PA, Szalai VA, Yang WT, Thorp HH (2001) J Phys Chem B 105:6437–6444

    Article  CAS  Google Scholar 

  18. Uudsemaa M, Tamm T (2003) J Phys Chem A 107:9997–10003

    Article  CAS  Google Scholar 

  19. Patterson EV, Cramer CJ, Truhlar DG (2001) J Am Chem Soc 123:2025–2031

    Article  CAS  Google Scholar 

  20. Frisch MJ et al (2009) Gaussian 09, revision A.1, Gaussian, Inc., Wallingford CT

  21. Becke D (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  23. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  24. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  25. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  26. Roy LE, Hay PJ, Martin RL (2008) J Chem Theory Comput 4:1029–1031

    Article  CAS  Google Scholar 

  27. Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114

    Article  CAS  Google Scholar 

  28. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  29. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  30. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  31. Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161–2200

    Article  CAS  Google Scholar 

  32. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  33. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  34. Fukui K (1970) J Phys Chem 74:4161–4163

    Article  CAS  Google Scholar 

  35. Fukui K (1981) Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  36. Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866–872

    Article  CAS  Google Scholar 

  37. Andrae D, Häußermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chem Acc 77:123–141

    Article  CAS  Google Scholar 

  38. Legault CY (2009) CYL view, version 1.0b; Universitede Sherbrooke: Sherbrooke, QC. http://www.cylview.org

  39. Marcus RA (1956) J Chem Phys 24:966–978

    Article  CAS  Google Scholar 

  40. Marcus RA (1964) Annu Rev Phys Chem 15:155–196

    Article  CAS  Google Scholar 

  41. Hush NS (1961) Trans Faraday Soc 57:557–580

    Article  CAS  Google Scholar 

  42. Savéant JM (1993) Acc Chem Res 26:455–461

    Article  Google Scholar 

  43. Savéant JM (1987) J Am Chem Soc 109:6788–6795

    Article  Google Scholar 

  44. Workentin MS, Maran F, Wayner DDM (1995) J Am Chem Soc 117:2120–2121

    Article  CAS  Google Scholar 

  45. Saveant JM (1994) J Phys Chem 98:3116–3124

    Article  Google Scholar 

  46. Yayla HG, Knowles RR (2014) Synlett 25:2819–2826

    Article  CAS  Google Scholar 

  47. Miyazaki S, Kojima T, Mayer JM, Fukuzumi S (2009) J Am Chem Soc 131:11615–11624

    Article  CAS  Google Scholar 

  48. Miller DC, Choi GJ, Orbe HS, Knowles RR (2015) J Am Chem Soc 137:13492–13495

    Article  CAS  Google Scholar 

  49. Tarantino KT, Liu P, Knowles RR (2013) J Am Chem Soc 135:10022–10025

    Article  CAS  Google Scholar 

  50. Anderson J, Kochi JK (1970) J Org Chem 35:986–989

    Article  CAS  Google Scholar 

  51. Anderson JM, Kochi JK (1970) J Am Chem Soc 92:1651–1659

    Article  CAS  Google Scholar 

  52. Severin K (2006) Curr Org Chem 10:217–224

    Article  CAS  Google Scholar 

  53. Pintauer T (2010) Eur J Inorg Chem 17:2449–2460

    Article  Google Scholar 

  54. Minisci F (1975) Acc Chem Res 8:165–171

    Article  CAS  Google Scholar 

  55. Gossage RA, van de Kuil LA, van Koten G (1998) Acc Chem Res 31:423–431

    Article  CAS  Google Scholar 

  56. Zhang N, Yang D, Wei W, Yuan L, Nie F, Tian L, Wang H (2015) J Org Chem 80:3258–3263

    Article  CAS  Google Scholar 

  57. Mai WP, Sun GC, Wang JT, Song G, Mao P, Yang LR, Yuan JW, Xiao YM, Qu LB (2014) J Org Chem 79:8094–8102

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 322 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X. Mechanism for Ag (I)-catalyzed decarboxylative chlorination: a DFT study. Theor Chem Acc 135, 144 (2016). https://doi.org/10.1007/s00214-016-1903-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1903-z

Keywords

Navigation