Skip to main content
Log in

The key role of the sequential proton loss electron transfer mechanism on the free radical scavenging activity of some melatonin-related compounds

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The role of the acid–base equilibria and the sequential proton loss electron transfer mechanism (SPLET) on the free radical scavenging activity of six melatonin-related compounds was investigated using the density functional theory. It was found that this chemical route is particularly important for about half of the studied compounds. Some of their pKa values are reported here for the first time. In addition, our results also indicate that anionic species, presenting the phenolate moiety, may be crucial to scavenge peroxyl radicals albeit their populations are relatively low at physiological pH. The key number to consider in this context should be the product of the molar fraction of the reacting compound, at the pH of interest, by the corresponding rate constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Reiter RJ, Paredes SD, Manchester LC, Tan DX (2009) Crit Rev Biochem Mol Biol 44:175

    Article  CAS  Google Scholar 

  2. Aversa S, Pellegrino S, Barberi I, Reiter RJ, Gitto E (2012) J Matern Fetal Neonatal Med 25:207

    Article  CAS  Google Scholar 

  3. Manchester LC, Coto-Montes A, Boga JA, Andersen LPH, Zhou Z, Galano A, et al. (2015) J Pineal Res 59:403–419

  4. Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR (2000) Biol Signals Recept 9:137

    Article  CAS  Google Scholar 

  5. Reiter RJ, Tan DX, Galano A (2014) Physiology 29:325

    Article  CAS  Google Scholar 

  6. Zhang HM, Zhang Y (2014) J Pineal Res 57:131

    Article  CAS  Google Scholar 

  7. Alvarez-Diduk R, Galano A, Tan DX, Reiter RJ (2015) J Phys Chem B 119:8535

    Article  CAS  Google Scholar 

  8. Litwinienko G, Ingold KU (2003) J Org Chem 68:3433

    Article  CAS  Google Scholar 

  9. Litwinienko G, Ingold KU (2004) J Org Chem 69:5888

    Article  CAS  Google Scholar 

  10. Litwinienko G, Ingold KU (2005) J Org Chem 70:8982

    Article  CAS  Google Scholar 

  11. Litwinienko G, Ingold KU (2007) Acc Chem Res 40:222

    Article  CAS  Google Scholar 

  12. Foti MC (2007) J Pharm Pharmacol 59:1673

    Article  CAS  Google Scholar 

  13. Medina ME, Galano A, Alvarez-Idaboy JR (2014) Phys Chem Chem Phys 16:1197

    Article  CAS  Google Scholar 

  14. Cordova-Gomez M, Galano A, Alvarez-Idaboy JR (2013) RSC Adv 3:20209

    Article  CAS  Google Scholar 

  15. Iuga C, Alvarez-Idaboy JR, Russo N (2012) J Org Chem 77:3868

    Article  CAS  Google Scholar 

  16. Benayahoum A, Amira-Guebailia H, Houache O (2014) Comput Theor Chem 1037:1

    Article  CAS  Google Scholar 

  17. Marković Z, Crossed D, Signorović J, Dimitrić Marković JM, Živić M, Amić D (2014) Monatsh Chem 145:953

    Article  Google Scholar 

  18. Pérez-González A, Galano A, Alvarez-Idaboy JR (2014) New J Chem 38:2639

    Article  Google Scholar 

  19. Martínez A, Hernández-Marin E, Galano A (2012) Food Funct 3:442

    Article  Google Scholar 

  20. Xue Y, Zhang L, Li Y, Yu D, Zheng Y, An L et al (2013) J Phys Org Chem 26:240

    Article  CAS  Google Scholar 

  21. Mendoza-Wilson AM, Castro-Arredondo SI, Balandrán-Quintana RR (2014) Food Chem 161:155

    Article  CAS  Google Scholar 

  22. Dimitrić Marković JM, Milenković D, Amić D, Popović-Bijelić A, Mojović M, Pašti IA et al (2014) Struct Chem 25:1795

    Article  Google Scholar 

  23. Dorović J, Marković JMD, Stepanić V, Begović N, Amić D, Marković Z (2014) J Mol Model 20:Art Id 2345

  24. Lengyel J, Rimarčík J, Vagánek A, Klein E (2013) PCCP 15:10895

    Article  CAS  Google Scholar 

  25. Medina ME, Iuga C, Álvarez-Idaboy JR (2014) RSC Adv 4:52920

    Article  CAS  Google Scholar 

  26. Caicedo C, Iuga C, Castañeda-Arriaga R, Alvarez-Idaboy JR (2014) RSC Adv 4:38918

    Article  CAS  Google Scholar 

  27. Wright JS, Johnson ER, DiLabio GA (2001) J Am Chem Soc 123:1173

    Article  CAS  Google Scholar 

  28. Foti MC, Daquino C, Mackie ID, DiLabio GA, Ingold KU (2008) J Org Chem 73:9270

    Article  CAS  Google Scholar 

  29. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364

    Article  Google Scholar 

  30. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378

    Article  CAS  Google Scholar 

  31. Velez E, Quijano J, Notario R, Pabón E, Murillo J, Leal J et al (2009) J Phys Org Chem 22:971

    Article  CAS  Google Scholar 

  32. Black G, Simmie JM (2010) J Comput Chem 31:1236

    CAS  Google Scholar 

  33. Furuncuoǧlu T, Uǧur I, Degirmenci I, Aviyente V (2010) Macromolecules 43:1823

    Article  Google Scholar 

  34. Zhao Y, Truhlar DG (2008) J Phys Chem A 112:1095

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Gaussian 09. Gaussian, Inc., Wallingford

    Google Scholar 

  36. Eyring H (1935) J Chem Phys 3:63

    Article  Google Scholar 

  37. Evans MG, Polanyi M (1935) Trans Faraday Soc 31:875

    Article  CAS  Google Scholar 

  38. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771

    Article  CAS  Google Scholar 

  39. Marcus RA (1993) Rev Modern Phys 65:599

    Article  CAS  Google Scholar 

  40. Marcus RA (1997) Pure Appl Chem 69:13

    Article  CAS  Google Scholar 

  41. Collins FC, Kimball GE (1949) J Colloid Sci 4:425

    Article  CAS  Google Scholar 

  42. Smoluchowski M (1917) Z Phys Chem 92:129–168

  43. Einstein A (1905) Ann Phys 17:549

    Article  CAS  Google Scholar 

  44. Stokes GG (1903) Mathematical and physical papers. Cambridge University Press, Cambridge

    Google Scholar 

  45. Galano A, Alvarez-Idaboy JR (2013) J Comput Chem 34:2430

    Article  CAS  Google Scholar 

  46. Ho J, Coote ML (2010) Theor Chem Acc 125:3

    Article  CAS  Google Scholar 

  47. Mahal HS, Sharma HS, Mukherjee T (1999) Free Radic Biol Med 26:557

    Article  CAS  Google Scholar 

  48. Weber OA, Simeon V (1971) J Inorg Nucl Chem 33:2097

    Article  CAS  Google Scholar 

  49. Rudnick G, Kirk KL, Fishkes H, Schuldiner S (1989) J Biol Chem 264:14865

    CAS  Google Scholar 

  50. Chattopadhyay A, Rukmini R, Mukherjee S (1996) Biophys J 71:1952

    Article  CAS  Google Scholar 

  51. Corona-Avendao S, Romero-Romo MA, Rojas-Hernández A, Ramírez-Silva MT (2005) Spectrochim Acta Pt A Mol Spectrosc 61:621

    Article  Google Scholar 

  52. Galano A, Tan DX, Reiter RJ (2013) J Pineal Res 54:245

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Laboratorio de Visualización y Cómputo Paralelo at Universidad Autónoma Metropolitana-Iztapalapa for computing time. This work was partially supported by project SEP-CONACyT 167491. R. A.-D. acknowledges the economic support provided by the same project during his postdoctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annia Galano.

Additional information

Published as part of the special collection of articles “CHITEL 2015 - Torino - Italy”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Diduk, R., Galano, A., Tan, D.X. et al. The key role of the sequential proton loss electron transfer mechanism on the free radical scavenging activity of some melatonin-related compounds. Theor Chem Acc 135, 38 (2016). https://doi.org/10.1007/s00214-015-1785-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1785-5

Keywords

Navigation