Skip to main content
Log in

The effects of internal molecular dynamics on the evaporation/condensation of n-dodecane

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The effects of conformerisation and internal molecular dynamics of n-dodecane conformers on energy transfers between gas and liquid phases are investigated. Bond energies, Gibbs free energies of internal dynamics of a set of n-dodecane conformers, and energies of the molecules colliding with the surface of an n-dodecane nanodroplet are studied using quantum chemical calculations (DFT with ωB97X-D/cc-pVTZ and semi-empirical PM7) and ReaxFF method. The results of the analysis show that the accuracy of the methods increases as we move from the application of PM7 to the application of ReaxFF and then to DFT. Different temperature dependencies of internal Gibbs free energies of conformers in the gas and liquid phases are expected to affect the heat and mass transfer processes between them. The calculations for the gas and liquid (using the quantum solvation model; SMD) phases show significant differences in the internal dynamics of conformers and demonstrate an entropy–enthalpy competition in the evaporation/condensation of an ensemble of the conformers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Valero FPJ, Collins WD, Pilewskie P, Bucholtz A, Flatau PJ (1997) Direct radiometric observations of the water vapor greenhouse effect over the equatorial pacific ocean. Science 275:1773–1776

    Article  CAS  Google Scholar 

  2. Wheeler TD, Stroock AD (2008) The transpiration of water at negative pressures in a synthetic tree. Nature 455:208–212

    Article  CAS  Google Scholar 

  3. Sazhin SS (2006) Advanced models of fuel droplet heating and evaporation. Prog Energy Combust Sci 32:162–214

    Article  CAS  Google Scholar 

  4. Fujikawa S, Yano T, Watanabe M (2011) Vapor–liquid interfaces, bubbles and droplets. Springer, Heidelberg

    Book  Google Scholar 

  5. Sone Y (2002) Kinetic theory and fluid dynamics. Birkhäuser, Boston

    Book  Google Scholar 

  6. Ishiyama T, Fujikawa S, Kurz T, Lauterborn W (2013) Non-equilibrium kinetic boundary condition at the vapor–liquid interface of argon. Phys Rev E 88:042406

    Article  Google Scholar 

  7. Miles REH, Knox KJ, Reid JP, Laurain AMC, Mitchem L (2010) Measurements of mass and heat transfer at a liquid water surface during condensation or evaporation of a subnanometer thickness layer of water. Phys Rev Lett 105:116101

    Article  Google Scholar 

  8. Varilly P, Chandler D (2013) Water evaporation: a transition path sampling study. J Phys Chem B 117:1419

    Article  CAS  Google Scholar 

  9. Musolino N, Trout BL (2013) Insight into the molecular mechanism of water evaporation via the finite temperature string method. J Chem Phys 138:134707

    Article  Google Scholar 

  10. Ishiyama T, Yano T, Fujikawa T (2004) S. Molecular dynamics study of kinetic boundary condition at an interface between argon vapor and its condensed phase. Phys Fluids 16:4713

    Article  CAS  Google Scholar 

  11. Smith JD, Cappa CD, Drisdell WS, Cohen RC, Saykally RJ (2006) Raman thermometry measurements of free evaporation from liquid water droplets. J Am Chem Soc 128:12892–12898

    Article  CAS  Google Scholar 

  12. Hickman KCD (1954) Maximum evaporation coefficient of water. Indust Eng Chem 46:1442–1446

    Article  CAS  Google Scholar 

  13. Xia TK, Landman U (1994) Molecular evaporation and condensation of liquid n-alkane films. J Chem Phys 101:2498–2507

    Article  CAS  Google Scholar 

  14. Cao B-Y, Xie J-F, Sazhin SS (2011) Molecular dynamics study on evaporation and condensation of n-dodecane at liquid–vapor phase equilibria. J Chem Phys 134:164309

    Article  Google Scholar 

  15. Xie J-F, Sazhin SS, Cao B-Y (2011) Molecular dynamics study of the processes in the vicinity of the n-dodecane vapour/liquid interface. Phys Fluids 23:112104

    Article  Google Scholar 

  16. Holyst R et al (2013) Evaporation of freely suspended single droplets: experimental, theoretical and computational simulations. Rep Prog Phys 76:034601

    Article  CAS  Google Scholar 

  17. Winkler PM et al (2004) Mass and thermal accommodation during gas-liquid condensation of water. Phys Rev Lett 93:075701

    Article  Google Scholar 

  18. Li YQ et al (2001) Mass and thermal accommodation coefficients of H2O (g) on liquid water as a function of temperature. J Phys Chem A 105:10627–10634

    Article  CAS  Google Scholar 

  19. Gun’ko VM, Turov VV (2013) Nuclear magnetic resonance studies of interfacial phenomena; surfactant science series volume 154. CRC Press, Taylor & Francis Group, New York

    Book  Google Scholar 

  20. Goodman FO, Wachman HY (1976) Dynamics of gas-surface scattering. Academic Press, New York

    Google Scholar 

  21. Echeverría J, Aullón G, Danovich D, Shaik S, Alvarez S (2011) Dihydrogen contacts in alkanes are subtle but not faint. Nat Chem 3:323–330

    Article  Google Scholar 

  22. Van Duin ACT, Dasgupta S, Lorant F, Goddard WA III (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9396

    Article  Google Scholar 

  23. Chenoweth K, van Duin ACT, Goddard WA III (2008) ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A 112:1040

    Article  CAS  Google Scholar 

  24. Ding J, Zhang L, Zhang Y, Han K-L (2013) A reactive molecular dynamics study of n-heptane pyrolysis at high temperature. J Phys Chem A 117:3266–3278

    Article  CAS  Google Scholar 

  25. Wang Q-D, Wang J-B, Li J-Q, Tan N-X, Li X-Y (2011) Reactive molecular dynamics simulation and chemical kinetic modelling of pyrolysis and combustion of n-dodecane. Combust Flame 158:217–226

    Article  CAS  Google Scholar 

  26. Cheng X-M, Wang Q-D, Li J-Q, Wang J-B, Li X-Y (2012) ReaxFF molecular dynamics simulations of oxidation of toluene at high temperatures. J Phys Chem A 116:9811–9818

    Article  CAS  Google Scholar 

  27. Bagri A et al (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2:581–587

    Article  CAS  Google Scholar 

  28. Chenoweth K, van Duin ACT, Dasgupta S, Goddard WA III (2009) Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel. J Phys Chem A 113:1740–1746

    Article  CAS  Google Scholar 

  29. Nasiri R, Gun’ko VM, Sazhin SS (2013) Quantum mechanical effects in n-alkane droplets. In: ILASS—Europe, 25th European conference on liquid atomization and spray systems, Chania, Greece, 1–4 Sept 2013

  30. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  31. Stewart JJP (2013) Optimization of parameters for semi-empirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model 19:1–32

    Article  CAS  Google Scholar 

  32. Gun’ko VM, Nasiri R, Sazhin SS (2014) A study of the evaporation and condensation of n-alkane clusters and nanodroplets using quantum chemical methods. Fluid Phase Equilib 366:99–107

    Article  Google Scholar 

  33. Martin JML (2013) What can we learn about dispersion from the conformer surface of n-pentane? J Phys Chem A 117:3118–3132

    Article  CAS  Google Scholar 

  34. Zheng J, Mielke SL, Clarkson KL, Truhlar DG (2012) MSTor: a program for calculating partition functions, free energies, enthalpies, entropies, and heat capacities of complex molecules including torsional anharmonicity. Comput Phys Commun 183:1803–1812

    Article  CAS  Google Scholar 

  35. Frisch MJ et al (2009) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  36. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput Phys Commun 167:103–128

    Article  CAS  Google Scholar 

  37. Guidon M, Hutter J, VandeVondele J (2010) Auxiliary density matrix methods for Hartree–Fock exchange calculations. J Chem Theory Comput 6:2348–2364

    Article  CAS  Google Scholar 

  38. Goedecker S, Teter M, Hutter J (1996) Separable dual-space Gaussian pseudopotentials. Phys Rev B Condens Matter 54:1703–1710

    Article  CAS  Google Scholar 

  39. Stewart JJP (2013) MOPAC 2012, versions 13.123W and 13.123L, Stewart Computational Chemistry, Colorado Springs, CO, USA

  40. te Velde G et al (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Article  Google Scholar 

  41. Ghysels A et al (2007) Vibrational modes in partially optimized molecular systems. J Chem Phys 126:224102

    Article  CAS  Google Scholar 

  42. McQuarrie DA (1973) Statistical mechanics. Happer & Row, New York

    Google Scholar 

  43. Wu J, Xu X (2007) Improving the B3LYP bond energies by using the X1 method. J Chem Phys 127:214105

    Article  Google Scholar 

  44. Zhang IY, Wu JM, Xu X (2010) Extending the reliability and applicability of B3LYP. Chem Commun 46:3057–3070

    Article  CAS  Google Scholar 

  45. Luo YR (2007) Handbook of bond dissociation energies in organic compounds. CRC Press, Boca Raton

    Book  Google Scholar 

  46. Ben-Naim A (2006) Molecular theory of solutions. Oxford University Press Inc., New York

    Google Scholar 

  47. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  48. Winget P, Dolney DM, Giesen DJ, Cramer CJ, Truhlar DG (2010) Minnesota solvent descriptor database. University of Minnesota, Minneapolis

    Google Scholar 

  49. Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG (2011) Use of solution-phase vibrational frequencies in continuum models for the free energy of solvation. J Phys Chem B 115:14556–14562

    Article  CAS  Google Scholar 

  50. Pham HH, Taylor CD, Henson NJ (2013) First-principles prediction of the effects of temperature and solvent selection on the dimerization of benzoic acid. J Phys Chem B 117:868–876

    Article  CAS  Google Scholar 

  51. Yaws CL (ed) (2008) Thermophysical properties of chemicals and hydrocarbons. William Andrew Inc., Norwich

    Google Scholar 

  52. NIST Chemistry WebBook, saturation Properties for n-Dodecane-temperature increments. http://webbook.nist.gov/chemistry/. Accessed 17.01.15

Download references

Acknowledgments

The authors are grateful to Professor Truhlar’s group to provide us the MSTor program, Professor Martin J. Field (University of Grenoble, IBS) for useful discussions, and the EPSRC (UK) (Grants EP/J006793/1 and EP/L00202) for their financial support of this project. The use of NSCCS (http://www.nsccs.ac.uk/) and HECToR/ARCHER (http://www.archer.ac.uk/) supercomputers is gratefully acknowledged.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei S. Sazhin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri, R., Gun’ko, V.M. & Sazhin, S.S. The effects of internal molecular dynamics on the evaporation/condensation of n-dodecane. Theor Chem Acc 134, 83 (2015). https://doi.org/10.1007/s00214-015-1681-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1681-z

Keywords

Navigation