Skip to main content
Log in

Theoretical and kinetic study of reaction C2H + C3H6 on the C5H7 potential energy surface

Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The reaction mechanisms for reaction C2H + C3H6 (propene) on the C5H7 potential energy surface (PES) have been investigated by using quantum chemical calculations combined with canonical transition state theory and Rice–Ramsperger–Kassel–Marcus/master equation (RRKM/ME) theory. The optimization of the geometries and the calculation of the vibrational frequencies of reactants, transition states, and products are performed at the B3LYP/CBSB7 level of theory. The composite CBS-QB3 method is applied for energy calculations. The rate constants for reactions with tight transition states are obtained by canonical transition state theory, while the rate constants for barrierless reactions at the high-pressure limit are determined by the variational transition state theory. The rate constants for pressure-dependent reactions are obtained by RRKM/ME theory. The reaction of C2H + C3H6 is initiated by the internal and terminal additions of C2H to C3H6 without an entrance barrier, and the adduct of the internal and terminal additions is 2-methyl-1-butyl-3-yne (C5H7) and 4-pentyl-1-yne (C5H7), respectively. Products vinylacetylene (C4H4) + CH3 and 2-methyl-1-buten-3-yne (C5H6) + H are favored by the internal C2H addition to C3H6, whereas products 3-penten-1-yne (C5H6) + H and 4-penten-1-yne (C5H6) + H are preferred for the terminal C2H addition. The calculated rate constants are in good agreement with those available from the literature, and they are also given in modified Arrhenius equation form, which are useful in combustion modeling of hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Woon DE, Park JY (2009) Modeling chemical growth processes in Titan’s atmosphere 2. Theoretical study of reactions between C2H and ethane, propene, 1-butene, 2-butene, isobutene, trimethylethene, and tetramethylethene. Icarus 202:642–655

    Article  CAS  Google Scholar 

  2. Soorkia S, Trevitt AJ, Selby TM, Osborn DL, Taatjes CA, Wilson KR (2010) Reaction of the C2H radical with 1-butyne (C4H6): low-temperature kinetics and isomer-specific product detection. J Phys Chem A 114:3340–3354

    Article  CAS  Google Scholar 

  3. Kovacs T, Blitz MA, Seakins PW (2010) H-atom yields from the photolysis of acetylene and from the reaction of C2H with H2, C2H2, and C2H4. J Phys Chem A 114:4735–4741

    Article  CAS  Google Scholar 

  4. Bouwman J, Fournier M, Sims IR, Leone SR, Wilson KR (2013) Reaction rate and isomer-specific product branching ratios of C2H + C4H8: 1-Butene, cis-2-butene, trans-2-butene, and isobutene. J Phys Chem A 117:5093–5105

    Article  CAS  Google Scholar 

  5. Bouwman J, Goulay F, Leone SR, Wilson KR (2012) Bimolecular rate constant and product branching ratio measurements for the reaction of C2H with ethane and propene at 79 K. J Phys Chem A 116:3907–3917

    Article  CAS  Google Scholar 

  6. Jamal A, Mebel AM (2011) Reactions of C2H with 1- and 2-butynes: an ab initio/RRKM study of the reaction mechanism and product branching ratios. J Phys Chem A 115:2196–2207

    Article  CAS  Google Scholar 

  7. Jamal A, Mebel AM (2010) An ab initio/RRKM study of the reaction mechanism and product branching ratios of the reactions of ethynyl radical with allene and methylacetylene. Phys Chem Chem Phys 12:2606–2618

    Article  CAS  Google Scholar 

  8. Krishtal SP, Mebel AM, Kaiser RI (2009) A theoretical study of the reaction mechanism and product branching ratios of C2H + C2H4 and related reactions on the C4H5 potential energy surface. J Phys Chem A 113:11112–11128

    Article  CAS  Google Scholar 

  9. Mandal D, Mondal B, Das AK (2011) The association reaction between C2H and 1-butyne: a computational chemical kinetics study. Phys Chem Chem Phys 13:4583–4595

    Article  CAS  Google Scholar 

  10. Laufer AH, Fahr A (2004) Reactions and kinetics of unsaturated C2 hydrocarbon radicals. Chem Rev 104:2813–2832

    Article  CAS  Google Scholar 

  11. Krestinin AV (2000) Detailed modeling of soot formation in hydrocarbon pyrolysis. Combust Flame 121:513–524

    Article  CAS  Google Scholar 

  12. Hansen N, Klippenstein SJ, Westmoreland PR, Kasper T, Kohse-Hoinghaus K, Wang J, Cool TA (2008) Phys Chem Chem Phys 10:366–374

    Article  CAS  Google Scholar 

  13. Shukla B, Koshi M (2012) Importance of fundamental sp, sp2, and sp3 hydrocarbon radicals in the growth of polycyclic aromatic hydrocarbons. Anal Chem 84:5007–5016

    Article  CAS  Google Scholar 

  14. Saggese C, Sanchez NE, Frassoldati A, Cuoci A, Faravelli T, Alzueta MU, Ranzi E (2014) Kinetic modeling study of polycyclic aromatic hydrocarbons and soot formation in acetylene pyrolysis. Energy Fuels 28:1489–1501

    Article  CAS  Google Scholar 

  15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 (Revision B.05)

  16. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  17. Lee C, Yang W, Parr RG (1988) Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  18. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  19. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110:2822–2827

    Article  CAS  Google Scholar 

  20. Sirjean B, Fournet R (2012) Theoretical study of the thermal decomposition of the 5-methyl-2-furanylmethyl radical. J Phys Chem A 116:6675–6684

    Article  CAS  Google Scholar 

  21. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) Assessment of gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106:1063–1079

    Article  CAS  Google Scholar 

  22. Pitzer KS, Gwinn WD (1942) Energy levels and thermodynamic functions for molecules with internal rotation I. rigid frames with attached tops. J Chem Phys 10:428–440

    Article  CAS  Google Scholar 

  23. Mokrushin V, Tsang W (2009) Chemrate v.1.5.8; National Institute of Standards and Technology: Gaithersburg, MD, 2009

  24. da Silva G, Bozzelli JW (2008) Variational analysis of the phenyl + O 2 and phenoxy + O reactions. J Phys Chem A 112:3566–3575

    Article  Google Scholar 

  25. da Silva G, Hamdan MR, Bozzelli JW (2009) Oxidation of the benzyl radical: mechanism, thermochemistry, and kinetics for the reactions of benzyl hydroperoxide. J Chem Theory Comput 5:3185–3194

    Article  Google Scholar 

  26. Johnston HS, Heicklen J (1962) Tunnelling corrections for unsymmetrical Eckart potential energy barriers. J Phys Chem 66:532–533

    Article  Google Scholar 

  27. Beyer T, Swinehart DF (1973) Algorithm 448: number of multiply-restricted partitions. Comm Assoc Comput Mac 16:379

    Google Scholar 

  28. Sirjean B, Dames E, Sheen DA, You XQ, Sung C, Holley AT, Egolfopoulos FN, Wang H, Vasu SS, Davidson DF, Hanson RK, Pitsch H, Bowman CT, Kelley A, Law CK, Tsang W, Cernansky NP, Miller DL, Violi A, Lindstedt RP (2009) A high-temperature chemical kinetic model of n-alkane oxidation. JetSurF version 1:2009

    Google Scholar 

  29. Tardy DC, Rabinovitch BS (1977) Intermolecular vibrational energy transfer in thermal unimolecular systems. Chem Rev 77:369–408

    Article  CAS  Google Scholar 

  30. Manion JA, Awan IA (2013) The decomposition of 2-pentyl and 3-pentyl radicals. Proc Combust Inst 34:537–545

    Article  CAS  Google Scholar 

  31. Zhao L, Ye LL, Zhang F, Zhang LD (2012) Thermal decomposition of 1-pentanol and its isomers: A theoretical study. J Phys Chem A 116:9238–9244

    Article  CAS  Google Scholar 

  32. NIST. Computational Chemistry Comparison and Benchmark Database. NIST Standard Reference Database Number 101 (2013), Available at http://webbook.nist.gov/

  33. Wheeler SE, Robertson KA, Allen WD, Schaefer HF III (2007) Thermochemistry of key soot formation intermediates: C3H3 isomers. J Phys Chem A 111:3819–3830

    Article  CAS  Google Scholar 

  34. Blanquart G, Desjardins PP, Pitsch H (2009) Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combust Flame 156:588–607

    Article  CAS  Google Scholar 

  35. Gueniche HA, Glaude PA, Fournet R, Battin-Leclerc F (2008) Rich methane premixed laminar flames doped by light unsaturated hydrocarbons III. Cyclopentene. Combust Flame 152:245–261

    Article  CAS  Google Scholar 

  36. Heyberger B, Belmekki N, Conraud V, Glaude PA, Fournet R, Battin-leclerc F (2002) Oxidation of small alkenes at high temperatures. Int J Chem Kinet 34:666–677

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 91016002, 20973118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ze-Rong Li or Xiang-Yuan Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1011 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, CM., Ning, HB., Li, ZR. et al. Theoretical and kinetic study of reaction C2H + C3H6 on the C5H7 potential energy surface. Theor Chem Acc 134, 1599 (2015). https://doi.org/10.1007/s00214-014-1599-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1599-x

Keywords

Navigation