Skip to main content

Advertisement

Log in

Semiclassical quantization of atomic systems through their normal form: the hydrogen atom

Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Over a century after Bohr’s the initial quantization of hydrogen, the semiclassical quantization of atomic systems still represents a challenge. In the present paper, we re-examine the semiclassical quantization of hydrogen asking the question: How can hydrogen be quantized without making use of its separability? The approach adopted was to explicitly a construct transformation from the physical variable to the action-angle variables. The initial difficulty encountered is the lack of an equilibrium point on the potential energy surface. To surmount this difficulty, it is noted that the circular periodic orbits are relative equilibria. In a rotating frame, the relative equilibria become critical points in the phase flow. It is shown that the flow in the vicinity of the critical point is stable. The Lie–Deprit transformation is then used to transform the system into normal form, following which the semiclassical quantization is straightforward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bohr N (1913) Philos Mag (Ser 6) 26:1

    Article  CAS  Google Scholar 

  2. Born M (1927) The mechanics of the atom. G. Bell and Sons, London. Translated by J. W. Fisher with revisions by D. R. Hartree

  3. Pauling L, Wilson EB Jr (1935) Introduction to quantum mechanics. McGraw-Hill, London

    Google Scholar 

  4. Nagaoka H (1904) Philos Mag (Ser 6) 7:445

    Article  CAS  Google Scholar 

  5. Maxwell JC (1859) On the stability of the motion of Saturn’s rings. MacMillan, London

    Google Scholar 

  6. Thomson JJ (1904) Philos Mag (Ser 6) 7:237

    Article  CAS  Google Scholar 

  7. Geiger H, Marsden E (1909) Proc R Soc Lond A 82:495

    Article  CAS  Google Scholar 

  8. Rutherford E (1911) Philos Mag (Ser 6) 21:699

    Google Scholar 

  9. Bohr N (1913) Philos Mag (Ser 6) 26:476

    Article  Google Scholar 

  10. Bohr N (1913) Philos Mag (Ser 6) 26:857

    Article  Google Scholar 

  11. Einstein A (1979) Verh It Phys Ges 19, 82 (1917). (Engl. transl.: Jaffé C, JILA Report no. 116, Joint Institute of Laboratory Astrophysics, University of Colorado)

  12. Sommerfeld A (1919) Atombau und Spektrallinien. Friedrich Vieweg und Sohn, Braunschweig

    Google Scholar 

  13. van Vleck JD (1922) Philos Mag (Ser 6) 44:842

    Article  Google Scholar 

  14. Leopold JG, Percival IC (1980) J Phys B Atom Mol Phys 13:1037

    Article  CAS  Google Scholar 

  15. Strand MP, Reinhardt WP (1979) J Chem Phys 70:3812

    Article  CAS  Google Scholar 

  16. Percival IC (1977) Advances in chemical physics, vol 36, chap. 1. Wiley, New York

    Google Scholar 

  17. Ezra GS, Richter K, Tanner G, Wintgen D (1991) J Phys B Atom Mol Opt Phys 24:L413

    Article  CAS  Google Scholar 

  18. Gutzwiller MC (1991) Chaos in classical and quantum mechanics. Interdisciplinary applied mathematics, vol 1. Springer, Berlin

  19. Jaffé C, Reinhardt WP (1982) J Chem Phys 77:5191

    Article  Google Scholar 

  20. Child MS (1991) Semiclassical mechanics with molecular applications. Clarendon Press, Oxford

    Google Scholar 

  21. Maslov VP (1972) Théorie des perturbation et méthodes et asymptotiques (Dunod)

  22. Goldstein H (1980) Classical mechanics. Addison-Wesley, Reading

    Google Scholar 

  23. Meyer KR, Schmidt DS (1993) Celest Mech 55:289

    Article  Google Scholar 

  24. Saari DG (2005) Collisions, rings, and other Newtonian N-body problems, CBMS regional conference series in mathematics, vol 104. American Mathematical Society, Providence

    Google Scholar 

  25. Deprit A (1969) Celest Mech 1:12

    Article  Google Scholar 

  26. Meyer K, Hall G, Offin D (2009) Introduction to Hamiltonian dynamical systems and the N-body problem, applied mathematical sciences, vol 90, 2nd edn. Springer, Berlin

    Google Scholar 

  27. Palacián J, Yanguas P (2000) Nonlinearity 13:1021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Jaffé.

Additional information

Dedicated to Professor Greg Ezra and published as part of the special collection of articles celebrating his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaffé, C., Palacián, J., Yanguas, P. et al. Semiclassical quantization of atomic systems through their normal form: the hydrogen atom. Theor Chem Acc 134, 1592 (2015). https://doi.org/10.1007/s00214-014-1592-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1592-4

Keywords

Navigation