Skip to main content
Log in

Numerical solution of solvent reorganization energy and its application in electron transfer reaction

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

According to our recent studies on the nonequilibrium solvation, the solvent reorganization energy λ s is found to be the cost of maintaining the residual polarization, which equilibrates with the constraining extra electric field. In this work, a matrix form of λ s has been formulated based our new analytical expression of the solvent reorganization energy. By means of the integral equation formulation-polarizable continuum model (IEF-PCM), a new numerical algorithm for λ s has been implemented as a subroutine coupled with the Q-Chem package. Then, we have performed a comparison of numerical results with analytical solution obtained by two-sphere model for λ s in self-exchange electron transfer (ET) reaction of He–He+ system. The numerical results and analytical solution coincide as the distance between the donor and the acceptor. In order to compare with our pervious numerical algorithm with dielectric polarizable continuum model, self-exchange ET reactions between tetracyanoethylene, tetrathiafulvalene, and their corresponding ionic radicals in acetonitrile have been studied. Overall, the solvent reorganization energy calculated by IEF-PCM is more reasonable since IEF-PCM gives a better self-energy of surface element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Skourtis SS, Waldeck DH, Beratan DN (2010) Annu Rev Phys Chem 61:461

    Article  CAS  Google Scholar 

  2. Piotrowiak P (1991) Chem Soc Rev 28:143

    Article  Google Scholar 

  3. Hush N (1968) Electrochim Acta 13:1005

    Article  CAS  Google Scholar 

  4. Marcus RA (1993) Rev Mod Phys 65:599

    Article  CAS  Google Scholar 

  5. Nelsen SF, Blackstock SC, Kim Y (1987) J Am Chem Soc 109:677

    Article  CAS  Google Scholar 

  6. Rauhut G, Clark T (1993) J Am Chem Soc 115:9127

    Article  CAS  Google Scholar 

  7. Wu Q, Van Voorhis T (2006) J Phys Chem A 110:9212

    Article  CAS  Google Scholar 

  8. Cramer CJ, Truhlar DG (2008) Acc Chem Res 41:760

    Article  CAS  Google Scholar 

  9. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

  10. Wang X-J, Zhu Q, Li YK, Cheng XM, Li XY, Fu KX, He FC (2010) J Phys Chem B 114:2189

    Article  CAS  Google Scholar 

  11. Ren HS, Li YK, Zhu Q, Zhu J, Li X-Y (2012) Phys Chem Chem Phys 14:13284

    Article  CAS  Google Scholar 

  12. Wu HY, Ren HS, Zhu Q, Li XY (2012) Phys Chem Chem Phys 14:5538

    Article  CAS  Google Scholar 

  13. Ren HS, Ming MJ, Ma JY, Li XY (2013) J Phys Chem A 117:8017

    Article  CAS  Google Scholar 

  14. Mennucci B Cammi R, Interscience W (2007) Continuum solvation models in chemical physics: from theory to applications; Wiley Online Library

  15. Leontovich M (1983) Statistical physics, vol 28. Nauka, Moscow, p 99

  16. Li XY, Zhu Q, He FC, Fu KX (2011) Extension of classical thermodynamics to nonequilibrium polarization. In: Tadashi M (ed) InTech, Vol 11, p 206

  17. Li XY, Wang QD, Wang JB, Ma JY, Fu KX, He FC (2010) Phys Chem Chem Phys 12:1341

    Article  CAS  Google Scholar 

  18. Li XY, He FC, Fu KX, Liu W (2010) J Chem Theory Comput 9(1):23–37

    Article  Google Scholar 

  19. Scalmani G, Frisch MJ (2010) J Chem Phys 132:114110

    Article  Google Scholar 

  20. Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032

    Article  CAS  Google Scholar 

  21. Cossi M, Barone V (2000) J Phys Chem A 104:10614

    Article  CAS  Google Scholar 

  22. Ming MJ, Bi TJ, Ma JY, Wang F, Li XY (2014) submitted for publication

  23. Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert AT, Slipchenko LV, Levchenko SV, O’Neill DP (2006) Phys Chem Chem Phys 8:3172

    Article  CAS  Google Scholar 

  24. Farazdel A, Dupuis M, Clementi E, Aviram A (1990) J Am Chem Soc 112:4206

    Article  CAS  Google Scholar 

  25. Improta R, Barone V, Newton MD (2006) Chem Phys Chem 7:1211

    CAS  Google Scholar 

  26. Rosokha SV, Kochi JK (2007) J Am Chem Soc 129:828

    Article  CAS  Google Scholar 

  27. Rosokha SV, Kochi JK (2007) J Am Chem Soc 129:3683

    Article  CAS  Google Scholar 

  28. Rosokha S, Newton M, Head-Gordon M, Kochi JK (2006) Chem Phys 324(1):117

  29. Johnson MD, Miller JR, Green NS, Closs GL (1989) J Phys Chem 93:1173

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Yuan Li.

Additional information

Dedicated to Professor Guosen Yan and published as part of the special collection of articles celebrating his 85th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, TJ., Ming, MJ., Ren, HS. et al. Numerical solution of solvent reorganization energy and its application in electron transfer reaction. Theor Chem Acc 133, 1557 (2014). https://doi.org/10.1007/s00214-014-1557-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1557-7

Keywords

Navigation