Skip to main content
Log in

Preserving the edge magnetism of graphene nanoribbons by iodine termination: a computational study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

First-principles computations revealed that iodine (I) is an ideal terminal group for zigzag graphene nanoribbons (zGNRs) in terms of stabilizing the pure sp 2 coordinated edges and preserving the edge magnetism. Due to the strong steric effect of I atoms, the unfavorable sp 3 coordination can be efficiently suppressed and the pure sp 2 coordinated edges can be stabilized at rather feasible experimental conditions. Interestingly, the electronic structures of I-terminated zGNRs (I-zGNRs) with different edge configurations can be well rationalized by employing the Clar’s model. I-zGNRs can well reproduce the electronic and magnetic properties of those hydrogen-terminated zGNRs. Remarkably, I termination can significantly lower the critical electric field required to induce the half-metallic behavior. These results open new opportunities in fabricating spintronics devices based on zGNRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Gregorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  2. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Proc Natl Acad Sci USA 102:10451

    Article  CAS  Google Scholar 

  3. Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim PA (2012) Nature 490:192

    Article  CAS  Google Scholar 

  4. Tang Q, Zhou Z, Chen ZF (2013) Nanoscale 5:4541

    Article  CAS  Google Scholar 

  5. Son Y-W, Cohen ML, Louie SG (2006) Phys Rev Lett 97:216803

    Article  Google Scholar 

  6. Han MY, Özyilmaz B, Zhang Y, Kim P (2007) Phys Rev Lett 98:206805

    Article  Google Scholar 

  7. Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) J Phys Soc Jpn 65:1920

    Article  CAS  Google Scholar 

  8. Wakabayashi K, Sigrist M, Fujita M (1998) J Phys Soc Jpn 67:2089

    Article  CAS  Google Scholar 

  9. Son Y-W, Cohen ML, Louie SG (2006) Nature 444:347

    Article  CAS  Google Scholar 

  10. Hod O, Barone V, Peralta JE, Scuseria GE (2007) Nano Lett 7:2295

    Article  CAS  Google Scholar 

  11. Kan EJ, Li ZY, Yang JL, Hou JG (2008) J Am Chem Soc 130:4224

    Article  CAS  Google Scholar 

  12. Dutta S, Pati SK (2008) J Phys Chem B 112:1333

    Article  CAS  Google Scholar 

  13. Joseph Joly VL, Kiguchi M, Hao S-J, Takai K, Enoki T, Sumii R, Amemiya K, Muramatsu H, Hayashi T, Kim YA, Endo M, Campos-Delgado J, López-Urías F, Botello-Méndez A, Terrones H, Terrones M, Dresselhaus MS (2010) Phys Rev B 81:245428

    Article  Google Scholar 

  14. Konishi A, Hirao Y, Matsumoto K, Kurata H, Kishi R, Shigeta Y, Nakano M, Tokunaga K, Kamada K, Kubo T (2013) J Am Chem Soc 135:1430

    Article  CAS  Google Scholar 

  15. Tao C, Jiao L, Yazyev OV, Chen Y-C, Feng J, Zhang X, Capaz RB, Tour JM, Zettl A, Louie SG, Dai H, Crommie MF (2011) Nat Phys 7:616

    Article  CAS  Google Scholar 

  16. Zhang X, Yazyev OV, Feng J, Xie L, Tao C, Jiao L, Pedramrazi Z, Zettl A, Louie SG, Dai H, Crommie AF (2013) ACS Nano 7:198

    Article  CAS  Google Scholar 

  17. Wassmann T, Seitsonen AP, Saitta AM, Lazzeri M, Mauri F (2008) Phys Rev Lett 101:096402

    Article  Google Scholar 

  18. Seitsonen AP, Saitta AM, Wassmann T, Lazzeri M, Mauri F (2010) Phys Rev B 82:115425

    Article  Google Scholar 

  19. Jiang DE, Sumpter BG, Dai S (2007) J Chem Phys 126:134701

    Article  Google Scholar 

  20. Plasser F, Pašalić H, Gerzabek MH, Libisch F, Reiter R, Burgdörfer J, Müller T, Shepard R, Lischka H (2013) Angew Chem Int Ed 52:2581

    Article  CAS  Google Scholar 

  21. Chia C-I, Crespi VH (2012) Phys Rev Lett 109:076802

    Article  Google Scholar 

  22. Li YF, Zhou Z, Carlos CR, Chen ZF (2013) Sci Rep 3:2030

    Google Scholar 

  23. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  24. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  25. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  26. Perdew JP, Burke L, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  27. Koskinen P, Malola S, Häkkinen H (2009) Phys Rev B 80:073401

    Article  Google Scholar 

  28. Clar E (1964) Polycyclic hydrocarbons. Academic Press, New York

    Book  Google Scholar 

  29. Clar E (1972) The aromatic sextet. Wiley, London

    Google Scholar 

  30. Watson MD, Fechtenkötter A, Müllen K (2001) Chem Rev 101:1267

    Article  CAS  Google Scholar 

  31. Randic M (2003) Chem Rev 103:3449

    Article  CAS  Google Scholar 

  32. Wassmann T, Seitsonen AP, Saitta AM, Lazzeri M, Mauri F (2010) J Am Chem Soc 132:3440

    Article  CAS  Google Scholar 

  33. Liu X, Zhang Z, Guo W (2013) Small 9:1405

    Article  CAS  Google Scholar 

  34. Lide DR (2008) CRC textbook of chemistry and physics. CRC press, Boca Raton

    Google Scholar 

  35. Kalita G, Wakita K, Takahashi M, Umeno M (2011) J Mater Chem 21:15209

    Article  CAS  Google Scholar 

  36. Poh HL, Simek P, Sofer Z, Pumera M (2013) Chem Eur J 19:2655

    Article  CAS  Google Scholar 

  37. Zhang ZH, Chen CF, Guo WL (2009) Phys Rev Lett 103:187204

    Article  Google Scholar 

  38. Zhang ZH, Chen CF, Zeng XC, Guo WL (2010) Phys Rev Lett 81:155428

    Google Scholar 

Download references

Acknowledgments

Support in China by startup funds of Nanjing Normal University (184080H20145) and Jiangsu Specially Appointed Professor Plan are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yafei Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2014_1548_MOESM1_ESM.doc

Clar’s representations of z 11 and z 21111 in the nonmagnetic state and z 2111 in the magnetic state, phonon spectrum of 8-I-zGNR with z 11 edge configuration, DOS of 8-H-zGNR, and band gap of I-zGNRs as a function of ribbon width. Supplementary material 1 (DOC 539 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, Y. Preserving the edge magnetism of graphene nanoribbons by iodine termination: a computational study. Theor Chem Acc 133, 1548 (2014). https://doi.org/10.1007/s00214-014-1548-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1548-8

Keywords

Navigation