Skip to main content
Log in

A Hirshfeld interpretation of the charge, spin distribution and polarity of the dipole moment of the open shell \( \left( {^{3} \Sigma^{ - } } \right) \) phosphorus halides: PF and PCl

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The charge, spin distribution and dipole moments of the open shell molecules PF and PCl have been analyzed using two variants of the Hirshfeld partitioning of the electronic density. In the HI or iterative Hirshfeld approach, one keeps the number of electrons on a given atom in the molecule and proto molecule equal and does not constrain the spin distribution in any way. In the spin-adapted approach, one constrains both the charges and spins on the in situ and proatoms to be equal. We find that while allowing for both spin and charge equalization results in a spin distribution that is different from that of the conventional HI method, the behavior of the atomic spin populations as a function of internuclear separation is similar. Both methods predict that as the bond is formed, the halogen gains α and looses β electrons with the converse for P. These electron shifts are further broken down into their σ and π components and we find that while the α electrons gained by the halogen are essentially all in the σ system, they come from both the σ and π system of P. The β electrons gained by P occupy both σ and π densities, but come essentially from the π system on the halogen. The dipole moment curves are partitioned into their α and β components and showing that the dipole due to the σ spin density has the polarity P + X while that due to the β spin density has the polarity P X +, while the net dipole polarity at equilibrium is P + X , consistent with the spin-dependent charge shifts described above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Harrison JF (2009) J Chem Phys 131:044117

    Article  Google Scholar 

  2. Hirshfeld FL (1977) Theor Chim Acta 44:129

    Article  CAS  Google Scholar 

  3. Bultinck P, VanAlsenoy C, Ayers PW, Carbo-Dorca R (2007) J Chem Phys 126:144111

    Article  Google Scholar 

  4. Geldof D, Krishtal A, Blockhuys F, Van Asenoy C (2011) J Chem Theory Comput 7:1328

    Article  CAS  Google Scholar 

  5. Douglas AE, Frackowiak M (1962) Can J Phys 40:832

    Article  CAS  Google Scholar 

  6. Minowa T, Saito S, Hirota E (1985) J Chem Phys 83:4939

    Article  CAS  Google Scholar 

  7. Kanamori H, Yamada C, Butler JE, Kawaguchi K, Hirota E (1985) J Chem Phys 83:4945

    Article  CAS  Google Scholar 

  8. Saito S, Endo Y, Hirota E (1985) J Chem Phys 82:2947

    Article  CAS  Google Scholar 

  9. O’Hare PAG, Wahl AC (1971) J Chem Phys 54:4563

    Article  Google Scholar 

  10. O’Hare PAG (1973) J Chem Phys 59:3842

    Article  Google Scholar 

  11. Nguyen MT (1986) Mol Phys 59:547

    Article  CAS  Google Scholar 

  12. Peterson KA, Woods C (1990) J Chem Phys 93:1876

    Article  Google Scholar 

  13. Latifzadeh L, Balasubramanian K (1995) Chem Phys Lett 243:243

    Article  CAS  Google Scholar 

  14. Papakondylis A, Mavridis A, Metropoulos A (1995) J Phys Chem 99:10759

    Article  CAS  Google Scholar 

  15. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  16. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  17. Bravo R, Machado BC (1999) Chem Phys Lett 307:511

    Article  CAS  Google Scholar 

  18. de Brouckere G (2000) Chem Phys 262:229

    Article  Google Scholar 

  19. da Silva-Neto AG, Roberto-Neto O, Ornellas FR, Machado FBC (2004) Chem Phys Lett 395:239

    Article  Google Scholar 

  20. Dunning TH Jr, Peterson KA, Wilson AK (2001) J Chem Phys 114:9244

    Article  CAS  Google Scholar 

  21. Kendall RH, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  22. Werner HJ, Knowles PJ, Almof J, Amos RD, Deegan MJO, Elbert ST, Hampel C, Meyer W, Peterson WK, Pitzer R, Stone AJ, Taylor PR, Lindh R, Mura ME, Thorsteinsson T Molpro, A package of ab initio programs

  23. Davidson ER, Chakravorty S (1992) Theor Chim Acta 83:319

    Article  CAS  Google Scholar 

  24. Parr RG, Ayers PW, Nalewajski RF (2005) J Phys Chem A 109:3957

    Article  CAS  Google Scholar 

  25. Kulback S (1977) Information theory and statistics. Dover, Mineola

    Google Scholar 

  26. Nalewajski RF, Parr RG (2000) Proc Natl Acad Sci 97:8879

    Article  CAS  Google Scholar 

  27. Ayers PW (2000) J Chem Phys 113:10886

    Article  CAS  Google Scholar 

  28. Martin JML, Bauschlicher CW Jr, Ricca A (2001) Comput Phys Commun 133:189

    Article  CAS  Google Scholar 

  29. Abramowitz M, Stegun IA (1970) Handbook of mathematical functions. Dover Publications Inc, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Harrison.

Additional information

Dedicated to the memory of Professor Isaiah Shavitt and published as part of the special collection of articles celebrating his many contributions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrison, J.F. A Hirshfeld interpretation of the charge, spin distribution and polarity of the dipole moment of the open shell \( \left( {^{3} \Sigma^{ - } } \right) \) phosphorus halides: PF and PCl. Theor Chem Acc 133, 1486 (2014). https://doi.org/10.1007/s00214-014-1486-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1486-5

Keywords

Navigation