Skip to main content
Log in

How to choose the frozen density in Frozen-Density Embedding Theory-based numerical simulations of local excitations?

  • Feature Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

According to Frozen-Density Embedding Theory, any observable evaluated for the embedded species is a functional of the frozen density (ρ B —the density associated with the environment). The environment-induced shifts in the energies of local excitations in organic chromophores embedded in hydrogen-bonded environments are analyzed. The excitation energies obtained for ρ B , which is derived from ground-state calculations for the whole environment applying medium quality basis sets (STO–DZP) or larger, vary in a narrow range (about 0.02 eV which is at least one order of magnitude less than the magnitude of the shift). At the same time, the ground-state dipole moment of the environment varies significantly. The lack of correlation between the calculated shift and the dipole moment of the environment reflects the fact that, in Frozen-Density Embedding Theory, the partitioning of the total density is not unique. As a consequence, such concepts as “environment polarization” are not well defined within Frozen-Density Embedding Theory. Other strategies to generate ρ B (superposition of densities of atoms/molecules in the environment) are shown to be less robust for simulating excitation energy shifts for chromophores in environments comprising hydrogen-bonded molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. In the present work any reference to Density Functional Theory (DFT), subsystem DFT, Kohn–Sham DFT, and Frozen-Density Embedding Theory (FDET), concerns the exact formalisms and not approximate methods based on such formalisms.

  2. In the case of embedded interacting wavefunction of the truncated Configuration Interaction form, an additional term in the embedding potential is needed [22] but it is a matter of convention whether this term is considered a part of the embedding potential or the potential for subsystem A (see also the relevant discussion in Ref. [52]).

References

  1. Åquist J, Warshel A (1993) Chem Rev 93:2523

    Article  Google Scholar 

  2. Bakowies D, Thiel W (1996) J Phys Chem 100(25):10580–10594

    Article  CAS  Google Scholar 

  3. Sauer J, Ugliengo P, Garrone E, Sounders VR (1994) Chem Rev 94:2095

    Article  CAS  Google Scholar 

  4. Cramer CJ, Truhlar DG (1999) Chem Rev 99(8):2161–2200

    Article  CAS  Google Scholar 

  5. Gordon MS, Fedorov DG, Pruitt SR, Slipchenko LV (2012) Chem Rev 112(1):632–672

    Article  CAS  Google Scholar 

  6. Zheng H (1993) Phys Rev B 48:14868–14883

    Article  CAS  Google Scholar 

  7. Laio A, VandeVondele J, Rothlisberger U (2002) J Chem Phys 116(16):6941–6947

    Article  CAS  Google Scholar 

  8. Fradelos G, Wesolowski TA (2011) J Phys Chem A 115(35):10018–10026

    Article  CAS  Google Scholar 

  9. Fradelos G, Wesolowski TA (2011) J Chem Theory Comput 7(1):213–222

    Article  CAS  Google Scholar 

  10. Sanchez ML, Aguilar MA, Olivares del Valle FJ (1997) J Comput Chem 18(3):313–322

    Article  CAS  Google Scholar 

  11. Coutinho K, Georg HC, Fonseca TL, Ludwig V, Canuto S (2007) Chem Phys Lett 437(1–3):148–152

    Article  CAS  Google Scholar 

  12. Casanova D, Gusarov S, Kovalenko A, Ziegler T (2007) J Chem Theory Comput 3(2):458–476

    Article  CAS  Google Scholar 

  13. Engkvist O, strand P-O, Karlstrm G (2000) Chem Rev 100(11):4087–4108

    Article  CAS  Google Scholar 

  14. Nanda KD, Beran GJO (2012) J Chem Phys 137(17)

  15. Gresh N, Cisneros GA, Darden TA, Piquemal J-P (2007) J Chem Theory Comput 3(6):1960–1986

    Article  CAS  Google Scholar 

  16. Day PN, Jensen JH, Gordon MS, Webb SP, Stevens WJ, Krauss M, Garmer D, Basch H, Cohen D (1996) J Chem Phys 105(5):1968–1986

    Article  CAS  Google Scholar 

  17. Assfeld X, Rivail JL (1996) Chem Phys Lett 263(1–2):100–106

    Article  CAS  Google Scholar 

  18. Winter NW, Pitzer RM, Temple DK (1987) J Chem Phys 86(6):3549–3556

    Article  CAS  Google Scholar 

  19. Moriarty JA, Phillips R (1991) Phys Rev Lett 66(23):3036–3039

    Article  CAS  Google Scholar 

  20. Wesolowski TA, Warshel A (1993) J Phys Chem 97(30):8050–8053

    Article  CAS  Google Scholar 

  21. Wesolowski TA (2006) One-electron equations for embedded electron density: challenge for theory and practical payoffs in multi-level modelling of soft condensed matter. In:  Leszczynski J (ed) Computational chemistry: reviews of current trends, vol X. World Scientific, Singapore, pp 1–82

  22. Wesolowski TA (2008) Phys Rev A 77(1):012504(1–8)

    Google Scholar 

  23. Pernal K, Wesolowski TA (2009) Int J Quant Chem 109(11, Sp. Iss. SI):2520–2525

    Article  CAS  Google Scholar 

  24. Stefanovich EV, Truong TN (1996) J Chem Phys 104(8):2946–2955

    Article  CAS  Google Scholar 

  25. Govind N, Wang YA, da Silva AJR, Carter EA (1998) Chem Phys Lett 295(12):129–134

    Article  CAS  Google Scholar 

  26. Trail JR, Bird DM (2000) Phys Rev B 62(24):16402–16411

    Article  CAS  Google Scholar 

  27. Hodak M, Lu W, Bernholc J (2008) J Chem Phys 128:014101

    Google Scholar 

  28. Neugebauer J, Baerends EJ (2006) J Phys Chem A 8786–8796

  29. Lahav D, Kluner T (2007) J Phys Cond Matt 19:226001

    Article  Google Scholar 

  30. Neugebauer J (2010) Phys Rep 489:1-87

    Article  CAS  Google Scholar 

  31. Gomes ASP, Jacob CR, Visscher L (2008) Phys Chem Chem Phys 10:5353

    Article  CAS  Google Scholar 

  32. Roncero O, de Lara-Castells MP, Villarreal P, Flores F, Ortega J, Paniagua M, Aguado A (2008) J Chem Phys 129(18):184104

    Article  CAS  Google Scholar 

  33. Goodpaster Jason D, Ananth Nandini, Manby Frederick R, Miller Thomas F III (2010) J Chem Phys 133(8):084103

    Article  CAS  Google Scholar 

  34. Wesolowski TA (1999) Chem Phys Lett 311(1–2):87–92

    Article  CAS  Google Scholar 

  35. Hong GY, Strajbl M, Wesolowski TA, Warshel A (2000) J Comput Chem 21(16):1554–1561

    Article  CAS  Google Scholar 

  36. Zbiri M, Atanasov M, Daul C, Garcia-Lastra JM, Wesolowski TA (2004) Chem Phys Lett 397(4–6):441–446

    Article  CAS  Google Scholar 

  37. Wesolowski TA (2004) J Am Chem Soc 126(37):11444–11445

    Article  CAS  Google Scholar 

  38. Zhou X, Wesolowski Tomasz A, Tabacchi G, Fois E, Calzaferri G, Devaux A (2013) Phys Chem Chem Phys 15:159–167

    Article  CAS  Google Scholar 

  39. Neugebauer J, Louwerse MJ, Baerends EJ, Wesolowski TA (2005) J Chem Phys 122(9):094115

    Article  Google Scholar 

  40. Jacob CR, Visscher L (2006) J Chem Phys 125:194104

    Article  Google Scholar 

  41. Jacob CR, Beyhan SM, Visscher L (2007) J Chem Phys 126:234116

    Article  Google Scholar 

  42. Gotz AW, Beyhan SM, Visscher L (2009) J Chem Theory Comput 5(12):3161–3174

    Article  CAS  Google Scholar 

  43. Kiewisch K, Eickerling G, Reiher M, Neugebauer J (2008) J Chem Phys 128(4):044114(1–15)

    Google Scholar 

  44. Casida ME (1995) Time-dependent density-functional response theory for molecules. In: Chong DP (ed) Recent advances in density-functional methods. World Scientific, Singapore

  45. Casida ME, Wesolowski TA (2004) Int J Quantum Chem 96(6):577–588

    Article  CAS  Google Scholar 

  46. Neugebauer J (2007) J Chem Phys 97:134116

    Article  Google Scholar 

  47. Fradelos G, Lutz JJ, Wesolowski TA, Piecuch P, Woch M (2011) J Chem Theory Comput 7(6):1647–1666

    Article  CAS  Google Scholar 

  48. Hohenberg P, Kohn W (1964) Phys Rev 136(3B):B864–B871

    Article  Google Scholar 

  49. Elliott P, Cohen MH, Wasserman A, Burke K (2009) J Chem Theory Comput 5(4):827–833

    Article  CAS  Google Scholar 

  50. Elliott P, Burke K, Cohen MH, Wasserman A (2010) Phys Rev A 82:024501

    Article  Google Scholar 

  51. Kohn W, Sham LJ (1965) Phys Rev 140(4A):A1133–A1138

    Article  Google Scholar 

  52. Severo Pereira Gomes A, Jacob CR (2012) Annu Rep Prog Chem Sect C Phys Chem 108:222–277

    Article  Google Scholar 

  53. Levy M (1979) Proc Natl Acad Sci U S A 76(12):6062–6065

    Article  CAS  Google Scholar 

  54. Levy M (1982) Phys Rev A 26(3):1200–1208

    Article  CAS  Google Scholar 

  55. Tran F, Wesolowski TA (2003) J Chem Phys 118:2072–2080

    Article  Google Scholar 

  56. Thomas LH (1927) Proc Camb Philos Soc 23:542

    Article  CAS  Google Scholar 

  57. Fermi E (1928) Z Phys 48:73

    Article  CAS  Google Scholar 

  58. von Weizsäcker CF (1935) Z Phys 96:431

    Article  Google Scholar 

  59. Kirzhnits DA (1957) Sov Phys JETP 5:64

    Google Scholar 

  60. Wesolowski TA, Weber J (1997) Int J Quantum Chem 61(2):303–311

    Article  CAS  Google Scholar 

  61. Wesolowski TA, Chermette H, Weber J (1996) J Chem Phys 105(20):9182–9190

    Article  CAS  Google Scholar 

  62. Wesolowski TA (1997) J Chem Phys 106(20):8516–8526

    Article  CAS  Google Scholar 

  63. Lembarki A, Rogemond F, Chermette H (1995) Phys Rev A 52(5):3704–3710

    Article  CAS  Google Scholar 

  64. Garcia Lastra JM, Kaminski JW, Wesolowski TA (2008) J Chem Phys 129(7):074107(1–15)

    Google Scholar 

  65. Wesolowski TA, Weber J (1996) Chem Phys Lett 248(1–2):71–76

    Article  CAS  Google Scholar 

  66. Bernard YA, Dulak M, Kaminski JW, Wesolowski TA (2008) J Phys A Math Theor 41(5):055302(1–19)

    Google Scholar 

  67. Fux S, Kiewisch K, Jacob CR, Neugebauer J, Reiher M (2008) . Chem Phys Lett 461(46):353–359

    Article  CAS  Google Scholar 

  68. Fux S, Jacob CR, Neugebauer J, Visscher L, Reiher M (2010) J Chem Phys 132(16):164101(1–18)

    Google Scholar 

  69. Huang C, Pavone M, Carter EA (2011) J Chem Phys 134(15):154110(1–11)

    Google Scholar 

  70. Cortona P (1991) Phys Rev B 44(16):8454–8458

    Article  Google Scholar 

  71. Wesolowski TA (2005) Mol Phys 103(6-8):1165–1167

    Article  CAS  Google Scholar 

  72. Savin A, Wesolowski TA (2009) Prog Theor Chem Phys 19:327–339

    Article  Google Scholar 

  73. Savin A, Wesolowski TA (2013) Non-additive kinetic energy and potential in analytically solvable systems and their approximate counterparts. In: Wesolowski TA, Wang YA (eds) Recent progress in orbital-free density functional theory. Recent Progress in Computational Chemistry, vol 6. World Scientific, Singapore, pp 275–295

  74. de Silva P, Wesolowski TA (2012) J Chem Phys 137(9):094110

    Article  Google Scholar 

  75. Gritsenko OV (2013) On the principal difference between the exact and approximate frozen-density embedding theory. In: Wesolowski TA, Wang YA (eds) Recent progress in computational chemistry, vol 6. World Scientific, Singapore, pp 355–365

  76. Dulak M, Wesolowski TA (2006) J Chem Phys 124:164101

    Article  Google Scholar 

  77. Fradelos G, Lutz JJ, Wesolowski TA, Piecuch P, Wloch M (2012) Shifts in excitation energies induced by hydrogen bonding: A comparison of the embedding and supermolecular time-dependent density functional theory calculations with the equation-of-motion coupled-cluster results. In: Hoggan PEE, Brandas EJJ, Maruani J, Piecuch P, Delgado-Barrio G (eds) Advances in the theory of quantum systems in chemistry and physics. Progress in theoretical chemistry and physics, vol 22. Springer, Netherlands, pp 219–248

  78. Wesolowski T, Warshel A (1994) J Phys Chem 98(20):5183–5187

    Article  CAS  Google Scholar 

  79. Wesolowski T, Muller RP, Warshel A (1996) J Phys Chem 100(38):15444–15449

    Article  CAS  Google Scholar 

  80. Adf, scm, theoretical chemistry. Vrije Universiteit, Amsterdam, the Netherlands. http://www.scm.com

  81. Dulak M, Wesolowski TA (2005) Int J Quantum Chem 101(5):543–549

    Article  CAS  Google Scholar 

  82. Jacob CR, Neugebauer J, Visscher L (2008) J Comput Chem 29:1011

    Article  CAS  Google Scholar 

  83. van Lenthe E, Baerends EJ (2003) J Comput Chem 24(9):1142–1156

    Article  Google Scholar 

  84. Gritsenko OV, Schipper PRT, Baerends EJ (1999) Chem Phys Lett 302(34):199–207

    Article  CAS  Google Scholar 

  85. Schipper PRT, Gritsenko OV, van Gisbergen SJA, Baerends EJ (2000) J Chem Phys 112(3):1344–1352

    Article  CAS  Google Scholar 

  86. Perdew JP (1991) Electronic structure of solids’91, vol X. Academie Verlag, Berlin

  87. Fradelos G, Kaminski JW, Wesolowski TA, Leutwyler S (2009) J Phys Chem A 113:9766

    Article  CAS  Google Scholar 

  88. Mulliken RS (1955) J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  89. Hirschfeld FL (1977) Theor Chim Acta 44:129–138

    Article  Google Scholar 

  90. Baerends EJ, Bickelhaupt FM, Guerra CF, Handgraaf JW (2003) J Comp Chem 25:189–210

    Google Scholar 

  91. Snijders JG, Swart M, Van Duijnen PTh (2001) J Comp Chem 22:79–88

    Article  Google Scholar 

  92. Dirac PAM (1930) Proc Camb Philos Soc 26:376–385

    Article  CAS  Google Scholar 

  93. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58(8):1200–1211

    Article  CAS  Google Scholar 

  94. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78(7):1396–1396

    Article  CAS  Google Scholar 

  95. Seixas de Melo J, Fernandes PF (2001) J Mol Struct 565–566:69–78

    Article  Google Scholar 

  96. Novak I, Kovač B (2001) J Phoochem Photobiol 113:913

    Google Scholar 

  97. Kovač B, Novak I (2002) Spectrochim Acta A 58:14831488

    Google Scholar 

  98. Georgieva I, Trendafilova N, Aquino A, Lischka H (2005) J Phys Chem A 109:11860–11869

    Article  CAS  Google Scholar 

  99. Slipchenko LV (2010) J Phys Chem A 114:8824–8830

    Article  CAS  Google Scholar 

  100. Polyakov I, Epifanovsky E, Grigorenko B, Krylov AI, Nemukhin A (2009) J Chem Theory Comput 5(7):1907–1914

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Grants from Swiss National Science Foundation (200020/134791/1 FNRS) and COST (CODECS) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz A. Wesolowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (1300 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humbert-Droz, M., Zhou, X., Shedge, S.V. et al. How to choose the frozen density in Frozen-Density Embedding Theory-based numerical simulations of local excitations?. Theor Chem Acc 133, 1405 (2014). https://doi.org/10.1007/s00214-013-1405-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1405-1

Keywords

Navigation