Skip to main content
Log in

Shortcomings of CVD modeling of SiC today

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The active, epitaxial layers of silicon carbide (SiC) devices are grown by chemical vapor deposition (CVD), at temperatures above 1,600 °C, using silane and light hydrocarbons as precursors, diluted in hydrogen. A better understanding of the epitaxial growth process of SiC by CVD is crucial to improve CVD tools and optimize growth conditions. Through computational fluid dynamic (CFD) simulations, the process may be studied in great detail, giving insight to both flow characteristics, temperature gradients and distributions, and gas mixture composition and species concentrations throughout the whole CVD reactor. In this paper, some of the important parts where improvements are very much needed for accurate CFD simulations of the SiC CVD process to be accomplished are pointed out. First, the thermochemical properties of 30 species that are thought to be part of the gas-phase chemistry in the SiC CVD process are calculated by means of quantum-chemical computations based on ab initio theory and density functional theory. It is shown that completely different results are obtained in the CFD simulations, depending on which data are used for some molecules, and that this may lead to erroneous conclusions of the importance of certain species. Second, three different models for the gas-phase chemistry are compared, using three different hydrocarbon precursors. It is shown that the predicted gas-phase composition varies largely, depending on which model is used. Third, the surface reactions leading to the actual deposition are discussed. We suggest that hydrocarbon molecules in fact have a much higher surface reactivity with the SiC surface than previously accepted values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Danielsson Ö, Henry A, Janzén E (2002) J Cryst Growth 243:170

    Article  CAS  Google Scholar 

  2. Nishizawa S, Pons M (2006) Chem. Vap Depos 12:516

    Article  CAS  Google Scholar 

  3. Veneroni A, Masi M (2006) Chem Vap Depos 12:562

    Article  CAS  Google Scholar 

  4. Ruscic B, Boggs JE, Burcat A, Csaszar AG, Demaison J, Janoschek R, Martin JML, Morton ML, Rossi MJ, Stanton JF, Szalay PG, Westmoreland PR, Zabel F, Berces T (2005) J Phys Chem Ref Data 34:573

    Article  CAS  Google Scholar 

  5. A. Burcat and B. Ruscic on ftp://technion.ac.il/pub/supported/aetdd/thermodynamics. Accessed 10 June 2013

  6. Kee RJ, Rupley FM, Miller JA, Coltrin ME, Grcar JF, Meeks E, Moffat HK, Lutz AE, Dixon-Lewis G, Smooke MD, Warnatz J, Evans GH, Larson RS, Mitchell RE, Petzold LR, Reynolds WC, Caracotsios M, Stewart WE, Glarborg P, Wang C, Adigun O (2000) CHEMKIN collection, release 3.6, reaction design. Inc., San Diego, CA

  7. Stinespring CD, Wormhoudt JC (1988) J Cryst Growth 87:481

    Article  CAS  Google Scholar 

  8. Allendorf MD (1993) J Electrochem Soc 140:747

    Article  CAS  Google Scholar 

  9. Raffy C, Blanquet E, Pons M, Bernard C, Melius CF, Allendorf MD (1999) J Phys IV France 09:Pr8–Pr205

    Google Scholar 

  10. Hallin C, Ivanov IG, Egilsson T, Henry A, Kordina O, Janzén E (1998) J Cryst Growth 183:163

    Article  CAS  Google Scholar 

  11. Parr RG (1990) Int J Quantum Chem 37:327

    Article  CAS  Google Scholar 

  12. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1, gaussian. Inc., Wallingford, CT

  14. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  15. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  16. McLean AD, Chandler GS (1980) Chem Phys 72:5639

    CAS  Google Scholar 

  17. Raghavachari K, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  Google Scholar 

  18. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968

    Article  CAS  Google Scholar 

  19. Gordon S, McBride BJ (1976) Technical Report NASA SP-273, Interim Revision March 1976, NASA Lewis Research Center, Washington DC, USA

  20. ESI Group. http://www.esi-cfd.com. Accessed 27 Sept 2013

  21. Wong H-W, Nieto JCA, Swihart MT, Broadbelt LJ (2004) J Phys Chem A 108:874

    Article  CAS  Google Scholar 

  22. Allendorf MD, Kee RJ (1991) J Electrochem Soc 138:841

    Article  CAS  Google Scholar 

  23. de Persis S, Dollet A, Teyssandier F (2003) J Anal Appl Pyrolysis 70:55

    Article  Google Scholar 

  24. Löfgren PM, Ji W, Hallin C, Gu C-Y (2000) J Electrochem Soc 147:164

    Article  Google Scholar 

  25. Baulch DL, Cobos CJ, Cox RA, Esser C, Frank P, Just Th, Kerr JA, Pilling MJ, Troe J, Walker RW, Warnatz J (1992) J Phys Chem Ref Data 21:411

    Article  CAS  Google Scholar 

  26. Baulch DL, Cobos CJ, Cox RA, Frank P, Hayman G, Just Th, Kerr JA, Murrells T, Pilling MJ, Troe J, Walker RW, Warnatz J (1994) J Phys Chem Ref Data 23:847

    Article  CAS  Google Scholar 

  27. Baulch DL, Bowman CT, Cobos CJ, Cox RA, Just Th, Kerr JA, Pilling MJ, Stocker D, Troe J, Tsang W, Walker RW, Warnatz J (2005) J Phys Chem Ref Data 34:757

    Article  CAS  Google Scholar 

  28. Tsang W, Hampson RF (1986) J Phys Chem Ref Data 15:1087

    Article  CAS  Google Scholar 

  29. Tsang W (1988) J Phys Chem Ref Data 17:887

    Article  CAS  Google Scholar 

  30. Tsang W (1991) J Phys Chem Ref Data 20:221

    Article  CAS  Google Scholar 

  31. Ho P, Coltrin ME, Breiland WG (1994) J Phys Chem 98:10138

    Article  CAS  Google Scholar 

  32. Olander J, Larsson KME (2004) Thin Solid Films 458:191

    Article  CAS  Google Scholar 

  33. Stinespring CD, Wormhoudt JC (1989) J Appl Phys 65:1733

    Article  CAS  Google Scholar 

  34. Mogab CJ, Leamy HJ (1974) J Appl Phys 45:1075

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledged the support from the Swedish Foundation for Strategic Research, projects SM11-0051 and EM11-0034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ö. Danielsson.

Additional information

Published as part of a special collection of articles focusing on chemical vapor deposition and atomic layer deposition.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danielsson, Ö., Sukkaew, P., Ojamäe, L. et al. Shortcomings of CVD modeling of SiC today. Theor Chem Acc 132, 1398 (2013). https://doi.org/10.1007/s00214-013-1398-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1398-9

Keywords

Navigation