Skip to main content
Log in

Theory predicts triplet ground-state carbene containing the N-heterocyclic carbenic unit

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A theoretical study of singlet- and triplet-state cyclic vinylidenes was performed using the B3LYP, B3PW91, CCSD, CCSD(T), QCISD, and QCISD(T) methods at the 6-311G(d), 6-311++G(d,p), 6-311++G(df,pd), 6-311++G(2df,2pd), and 6-311++G(3df,3pd) basis sets. Fifty-eight vinylidenes, featuring the N-heterocyclic carbenic (NHC) unit, were chosen as the model molecules for this study. The computations demonstrate that fifty-one cyclic vinylidenes are predicted to have a triplet ground state with a singlet and triplet splitting energy of approximately −0.11 to −20 and −1.8 to −21 kcal/mol, for the B3LYP/6-311++G(d,p) and B3PW91/6-311++G(df,pd) levels of theory. Our theoretical findings suggest that it is the π-electron-rich ability of the NHC ring that makes cyclic vinylidene preferably adopt the triplet ground state. A valence electron model was used to explain the computational results. The theoretical observations strongly suggest that besides the traditional fact that the carbenic center is attached by two sterically bulky substituents, the use of an NHC skeleton can significantly increase the probability of producing a vinylidene that has a triplet ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3

Similar content being viewed by others

Notes

  1. All computations were done using the Gaussian 03 package. For details, see the Supporting Information.

  2. We thank one reviewer for this suggestion.

  3. For instance, in the case of NHCHCHNH)C=C:, using the NBO analysis, one can obtain two π C=C → σ NC* interactions, each having 33.5 kcal/mol stabilizing energy for the triplet state. Also, there are two σ NC → π C=C* interactions, each stabilizing the triplet state by 14.2 kcal/mol. For details, see http://www.chem.wisc.edu/~nbo5.

References

  1. Moss RA (1980) Acc Chem Res 13:58

    Article  CAS  Google Scholar 

  2. Moss RA (1989) Acc Chem Res 22:15

    Article  CAS  Google Scholar 

  3. Moss RA (2002) In: Bertrand G (ed) Carbene chemistry. Marcel Dekker, New York, pp 57–101

    Google Scholar 

  4. Hoffmann R, Zeiss GD, Van Dine GW (1968) J Am Chem Soc 90:1485

    Article  CAS  Google Scholar 

  5. Baird NC, Taylor KF (1978) J Am Chem Soc 100:1333

    Article  CAS  Google Scholar 

  6. Arduengo AJ III, Harlow RL, Kline M (1991) J Am Chem Soc 113:361

    Article  CAS  Google Scholar 

  7. Arduengo AJ III (1999) Acc Chem Res 32:913

    Article  CAS  Google Scholar 

  8. (2007) Coord Chem Rev 251:595–895

  9. (2009) Chem Rev 109(8)

  10. (2009) Eur J Inorg Chem (13)

  11. (2009) Dalton Trans (35)

  12. Melaimi M, Soleihavoup M, Bertrand G (2010) Angew Chem Int Ed 49:8810

    Article  CAS  Google Scholar 

  13. Tomioka H (1997) Acc Chem Res 30:315

    Article  CAS  Google Scholar 

  14. Tomioka H (1998) In: Brinker U (ed) Advances in carbene chemistry, vol 2. JAI Press, Greenwich, CT, pp 175–214

    Chapter  Google Scholar 

  15. Tomioka H (2002) In: Bertrand G (ed) Carbene chemistry. Fontis Media S. A, Lausanne, pp 103–152

    Google Scholar 

  16. Kirmse W (2003) Angew Chem Int Ed 42:2117

    Article  CAS  Google Scholar 

  17. Hahn FE, Jahnke MC (2008) Angew Chem Int Ed 47:3122

    Article  CAS  Google Scholar 

  18. Hirai K, Itoh T, Tomioka H (2009) Chem Rev 109:3275

    Article  CAS  Google Scholar 

  19. Tomioka H, Hattori M, Hirai K, Murata S (1996) J Am Chem Soc 118:8723

    Article  CAS  Google Scholar 

  20. Hirai K, Tomioka H (1999) J Am Chem Soc 121:10213

    Article  CAS  Google Scholar 

  21. Hu Y, Hirai K, Tomioka H (1999) J Phys Chem A 103:9280

    Article  CAS  Google Scholar 

  22. Itakura H, Mizuno H, Hirai K, Tomioka H (2000) J Org Chem 65:8797

    Article  CAS  Google Scholar 

  23. Tomioka H, Iwamoto E, Itakura H, Hirai K (2001) Nature 412:626

    Article  CAS  Google Scholar 

  24. Kawano M, Hirai K, Tomioka H, Ohashi Y (2001) J Am Chem Soc 123:6904

    Article  CAS  Google Scholar 

  25. Iiba E, Hirai K, Tomioka H, Yoshioka Y (2002) J Am Chem Soc 124:14308

    Article  CAS  Google Scholar 

  26. Iwamoto E, Hirai K, Tomioka H (2003) J Am Chem Soc 125:14664

    Article  CAS  Google Scholar 

  27. Iwamoto E, Hirai K, Tomioka H (2003) J Am Chem Soc 125:14664

    Article  CAS  Google Scholar 

  28. Itoh T, Takada A, Hirai K, Tomioka H (2005) Org Lett 7:811

    Article  CAS  Google Scholar 

  29. Su M-D, Chu S-Y (1999) Chem Phys Lett 308:283

    Article  CAS  Google Scholar 

  30. Su M-D, Chu S-Y (2000) Chem Phys Lett 320:475

    Article  CAS  Google Scholar 

  31. Woodcock HL, Moran D, Schleyer PvR, Schaefer HF III (2001) J Am Chem Soc 123:4331

    Article  CAS  Google Scholar 

  32. Trindle C (2003) J Org Chem 68:9669

    Article  CAS  Google Scholar 

  33. Trindle C (2005) J Phys Chem A 109:898

    Article  CAS  Google Scholar 

  34. Woodcock HL, Moran D, Brooks BR, Schleyer PvR, Schaefer HF III (2007) J Am Chem Soc 129:3763

    Article  CAS  Google Scholar 

  35. Gu S-Y, Su M-D (2007) Chem Phys Lett 443:211

    Article  CAS  Google Scholar 

  36. Díez-González S, Marion N, Nolan SP (2009) Chem Rev 109:3612

    Article  Google Scholar 

  37. Enders D, Niemeier O, Henseler A (2007) Chem Rev 107:5606

    Article  CAS  Google Scholar 

  38. Poyatos M, Mata JA, Peris E (2009) Chem Rev 109:3677

    Article  CAS  Google Scholar 

  39. de Frémont P, Marion N, Nolan SP (2009) Coord Chem Rev 253:862 (and related references therein)

    Article  Google Scholar 

  40. Frisch MJ et al (2003) Gaussian 03, revision C 02. Gaussian, Inc., Pittsburgh, PA

    Google Scholar 

  41. Albright TA, Burdett JK, Whangbo MH (1985) In: Orbital interaction in chemistry, chap 2. Wiley, New York

  42. Davis JH, Goddard WA III, Harding LB (1977) J Am Chem Soc 99:2919

    Article  CAS  Google Scholar 

  43. Dykstra CE, Schaefer HF III (1978) J Am Chem Soc 100:1378

    Article  CAS  Google Scholar 

  44. Kenney JW, Simons J, Purvis GD, Bartlett RJ (1978) J Am Chem Soc 100:6930

    Article  CAS  Google Scholar 

  45. Ervin KM, Ho J, Lineberger WC (1989) J Chem Phys 91:5974

    Article  CAS  Google Scholar 

  46. Callo MM, Hamilton TP, Schaefer HF III (1990) J Am Chem Soc 112:8714

    Article  Google Scholar 

  47. Gilles MK, Lineberger WC, Ervin KM (1031) J Am Chem Soc 1993:115

    Google Scholar 

  48. DeLeeuw BJ, Fermann JT, Xie Y, Schaefer HF III (1039) J Am Chem Soc 1993:115

    Google Scholar 

  49. Gunion RF, Lineberger WC (1996) J Phys Chem 100:4395

    Article  CAS  Google Scholar 

  50. Robinson MS, Polak ML, Bierbaum VM, DePuy CH, Lineberger WC (1995) J Am Chem Soc 117:6766

    Article  CAS  Google Scholar 

  51. Gunion RF, Koppel H, Leach GW, Lineberger WC (1995) J Chem Phys 103:1250

    Article  CAS  Google Scholar 

  52. Worthington SE, Cramer CJ (1997) J Phys Org Chem 10:755

    Article  CAS  Google Scholar 

  53. Reed AE, Curtiss LA, Weinhold F (1998) Chem Rev 88:899

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Center for High-Performance Computing of Taiwan for generous amounts of computing time. They also thank the National Science Council of Taiwan for the financial support. We express our gratitude to the referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Der Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 614 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, MD., Chuang, CC. Theory predicts triplet ground-state carbene containing the N-heterocyclic carbenic unit. Theor Chem Acc 132, 1360 (2013). https://doi.org/10.1007/s00214-013-1360-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1360-x

Keywords

Navigation