Skip to main content
Log in

Organometallic copper I, II or III species in an intramolecular dechlorination reaction

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The present paper gives insight into an intramolecular dechlorination reaction involving Copper (I) and an ArCH2Cl moiety. The discussion of the presence of a CuIII organometallic intermediate becomes a challenge, and because of the lack of clear experimental detection of this proposed intermediate, and due to the computational evidence that it is less stable than other isomeric species, it can be ruled out for the complex studied here. Our calculations are completely consistent with the key hypothesis of Karlin et al. that TMPA-CuI is the substrate of intramolecular dechlorination reactions as well as the source to generate organometallic species. However the organometallic character of some intermediates has been refused because computationally these species are less stable than other isomers. Thus this study constitutes an additional piece towards the full understanding of a class of reaction of biological relevance. Further, the lack of high energy barriers and deep energy wells along the reaction pathway explains the experimental difficulties to trap other intermediates.

Graphical Abstract

In this study we give insight into an intramolecular dechlorination reaction involving Copper (I) and an ArCH2Cl moiety. The discussion about a CuIII organometallic intermediate becomes a challenge, but DFT calculations, together with the lack of a clear experimental detection of this proposed intermediate, reveal its presence can be ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Itoh S (2006) Curr Opin Chem Biol 10:115–122

    Article  CAS  Google Scholar 

  2. Gherman B, Heppner D, Tolman W, Cramer CJ (2006) J Biol Inorg Chem 11:197–205

    Article  CAS  Google Scholar 

  3. Chen P, Solomon EI (2004) Proc Natl Acad Sci USA 101:13105–13110

    Article  CAS  Google Scholar 

  4. Fukuzumi S, Karlin KD (2013) Coord Chem Rev 257:187–195

    Article  CAS  Google Scholar 

  5. Quant Hatcher L, Karli KD (2004) J Biol Inorg Chem 9:669–683

    Google Scholar 

  6. De la Lande A, Gérard H, Parisel O (2008) Int J Quant Chem 108:1898–1904

    Article  Google Scholar 

  7. De la Lande A, Parisel O, Gérard H, Moliner V, Reinaud O (2008) Chem Eur J 14:6465–6473

    Article  Google Scholar 

  8. Poater A, Cavallo L (2009) Inorg Chem 48:4062–4066

    Article  CAS  Google Scholar 

  9. De la Lande A, Gérard H, Moliner V, Izzet G, Reinaud O, Parisel O (2006) J Biol Inorg Chem 11:593–608

    Article  CAS  Google Scholar 

  10. Osako T, Karlin KD, Itoh S (2005) Inorg Chem 44:410–415

    Article  CAS  Google Scholar 

  11. Lucchese B, Humphreys KJ, Lee D-H, Incarvito CD, Sommer RD, Rheingold AL, Karlin KD (2004) Inorg Chem 43:5987–5998

    Article  CAS  Google Scholar 

  12. Lipshutz BH, Parker D, Kozlowski JA, Miller RD (1983) J Org Chem 48:3334–3336

    Article  CAS  Google Scholar 

  13. Nondek L, Hun LG, Wichterlova B, Krupicka S (1987) J Mol Catal 42:51–55

    Article  CAS  Google Scholar 

  14. Kern J-M, Sauvage J-P (1987) J Chem Soc Chem Commun 546–548

  15. Eckenhoff WT, Garrity ST, Pintauer T (2008) Eur J Inorg Chem 563–571

  16. Matyjaszewski K, Xia JH (2001) Chem Rev 101:2921–2990

    Article  CAS  Google Scholar 

  17. Wackett LP, Schanke CA (1992) Met Ions Biol Syst 28:329–356

    CAS  Google Scholar 

  18. Castro CE (1998) Rev Environ Contam Toxicol 155:1–67

    Article  CAS  Google Scholar 

  19. Maiti D, Narducci Sarjeant AA, Itoh S, Karlin KD (2008) J Am Chem Soc 130:5644–5645

    Article  CAS  Google Scholar 

  20. Casitas A, Poater A, Solà M, Stahl SS, Costas M, Ribas X (2010) Dalton Trans 39:10458–10463

    Article  CAS  Google Scholar 

  21. Xifra R, Ribas X, Llobet A, Poater A, Duran M, Solà M, Stack TDP, Benet-Buchholz J, Donnadieu B, Mahia J, Parella T (2005) Chem Eur J 11:5146–5156

    Article  CAS  Google Scholar 

  22. Bertz SH, Cope S, Murphy M, Ogle CA, Taylor BJ (2007) J Am Chem Soc 129:7208–7209

    Article  CAS  Google Scholar 

  23. Bartholomew ER, Bertz SH, Cope S, Dorton DC, Murphy M, Ogle CA (2008) Chem Commun 1176–1177

  24. Hu H, Snyder JP (2007) J Am Chem Soc 129:7210–7211

    Article  CAS  Google Scholar 

  25. Gartner T, Henze W, Gschwind RM (2007) J Am Chem Soc 129:11362–11363

    Article  Google Scholar 

  26. Ribas X, Jackson DA, Donnadieu B, Mahia J, Parella T, Xifra R, Hedman B, Hodgson KO, Llobet A, Stack TDP (2002) Angew Chem Int Ed 41:2991–2994

    Article  CAS  Google Scholar 

  27. Furuta H, Maeda H, Osuka A (2000) J Am Chem Soc 122:803–807

    Article  CAS  Google Scholar 

  28. Pratesi A, Zanello P, Giorgi G, Messori L, Laschi F, Casini A, Corsini M, Gabbiani C, Orfei M, Rosani C, Ginanneschi M (2007) Inorg Chem 46:10038–10040

    Article  CAS  Google Scholar 

  29. Brasche G, Buchwald SL (2008) Angew Chem Int Ed 47:1932–1934

    Article  CAS  Google Scholar 

  30. King AE, Huffman LM, Casitas A, Costas M, Ribas X, Stahl SS (2010) J Am Chem Soc 132:12068–12073

    Article  CAS  Google Scholar 

  31. Poater A, Cavallo L (2009) Inorg Chem 48:2340–2342

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C. Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas Ö, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara, A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C02; Wallingford, CT

  33. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  35. Stevens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Phys Chem 98:11623–11627

    Article  Google Scholar 

  36. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  37. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  38. For Cu, this basis corresponds to the (14s9p5d)/[9s5p3d] Wachters basis set (Wachters AJH (1970) J Chem Phys 52:1033–1036) with the contraction scheme 611111111/51111/311 supplemented with one f polarization function. In the Gaussian 03 implementation of the Cu basis set, the s and p functions come from Wachter’s optimization for the Cu atom in its 2S state, while the d functions come from Wachter’s optimization for the Cu atom in its 2D state

    Google Scholar 

  39. Caballol R, Castell O, Illas F, Moreira IDPR, Malrieu JP (1997) J Phys Chem A 101:7860–7866

    Article  CAS  Google Scholar 

  40. Winkler M (2005) J Phys Chem A 109:1240–1246

    Article  CAS  Google Scholar 

  41. Lindh R, Bernhardsson A, Schütz M (1999) J Phys Chem A 103:9913–9920

    Article  CAS  Google Scholar 

  42. Cramer CJ (1999) J Chem Soc Perkin Trans 2:2273–2283

    Google Scholar 

  43. Kikuchi A, Ito H, Abe J (2005) J Phys Chem B 109:19448–19453

    Article  CAS  Google Scholar 

  44. Borden WT (1998) Diradicals. In: Schleyer PVR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaeffer HF III (eds) The enciclopedia of computational chemistry. Wiley, Chichester, UK, pp 708–722

    Google Scholar 

  45. Poater J, Bickelhaupt FM, Solà M (2007) J Phys Chem A 111:5063–5070

    Article  CAS  Google Scholar 

  46. Gräfenstein J, Kraka E, Filatov M, Cremer D (2002) Int J Mol Sci 3:360–394

    Article  Google Scholar 

  47. Poater A, Ribas X, Llobet A, Cavallo L, Solà M (2008) J Am Chem Soc 130:17710–17717

    Article  CAS  Google Scholar 

  48. Poater A, Cavallo L (2013) Theor Chem Acc 132:1336–1348

    Article  Google Scholar 

  49. Gherman BF, Tolman WB, Cramer CJ (2006) J Comp Chem 27:1950–1961

    Article  CAS  Google Scholar 

  50. Borden WT, Davidson ER (1996) Acc Chem Res 29:67–75

    Article  CAS  Google Scholar 

  51. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  52. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  53. Siegbahn PEM (2003) J Biol Inorg Chem 8:577–585

    CAS  Google Scholar 

Download references

Acknowledgments

AP is grateful to the European Commission (CIG09-GA-2011-293900), Spanish MICINN (Ramón y Cajal contract RYC-2009-05226), and Generalitat de Catalunya (2011BE100793). We also want to thank the referees’ comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Poater.

Additional information

Published as part of the special collection of articles derived from the 8th Congress on Electronic Structure: Principles and Applications (ESPA 2012).

Electronic supplementary material

Below is the link to the electronic supplementary material.

xyz coordinates of all stationary points. This material is free of charge. (DOC 133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poater, A., Cavallo, L. Organometallic copper I, II or III species in an intramolecular dechlorination reaction. Theor Chem Acc 132, 1353 (2013). https://doi.org/10.1007/s00214-013-1353-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1353-9

Keywords

Navigation