Skip to main content
Log in

MS-CASPT2 study of the low-lying electronic excited states of di-thiosubstituted formic acid dimers

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The suitability of di-thiosubstituted derivatives of formic acid dimer, both in hydroxyl and carbonyl position, as possible hydrogen-bonded electron transfer linkers in a hypothetical donor–acceptor dyad for photovoltaic cells and artificial photosynthesis reactors has been studied from a theoretical point of view. To this purpose, the valence singlet electronic excited states of the four possible di-thiosubstituted isomers have been characterized through multi-state complete active space second-order perturbation theory (MS-CASPT2). These hydrogen-bonded systems present electronic spectra consisting of nπ* and ππ* excitations, both intra- and intermonomer. The eventual comparison of the calculated spectroscopic characteristics of the isolated hydrogen-bonded linkers with the experimental spectrum of the chromophore in a donor–acceptor dyad could allow establishing whether the linker would compete with the electron donor in the photon absorption process. Additionally, the analysis of the structural changes undergone by these species upon electronic excitation to the S1 would allow determining whether the population of this state of the linker upon UV–vis light absorption could compromise the formation of the charge transfer complex, key in the performance of photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Balzani V, Credi A, Venturi M (2008) Chemsuschem 1:26

    Article  CAS  Google Scholar 

  2. D’Souza F, Ito O (2012) Chem Soc Rev 41:86

    Article  Google Scholar 

  3. Beckers EHA, Chen Z, Meskers SCJ, Jonkheijm P, Schenning APHJ, Li X-Q, Osswald P, Wuerthner F, Janssen RAJJ (2006) Phys Chem B 110:16967

    Article  CAS  Google Scholar 

  4. Sanchez L, Sierra M, Martin N, Myles AJ, Dale TJ, Rebek J, Seitz W, Guldi DM (2006) Angew Chem Int Ed 45:4637

    Article  CAS  Google Scholar 

  5. Deibel C, Strobel T, Dyakonov V (2010) Adv Mater 22:4097

    Article  CAS  Google Scholar 

  6. Fuoss M, Accascina F (1959) Electrolytic conductance. Interscience, New York

    Google Scholar 

  7. Sreearunothai P, Morteani AC, Avilov I, Cornil J, Beljonne D, Friend RH, Phillips RT, Silva C, Herz LM (2006) Phys Rev Lett 96:117403

    Article  CAS  Google Scholar 

  8. Segura M, Sanchez L, de Mendoza J, Martin N, Guldi DMJ (2003) Am Chem Soc 125:15093

    Article  CAS  Google Scholar 

  9. Sessler JL, Wang B, Harriman AJ (1993) Am Chem Soc 115:10418

    Article  CAS  Google Scholar 

  10. Yu M-L, Wang S-M, Feng K, Khoury T, Crossley MJ, Fan Y, Zhang J-P, Tung C-H, Wu L-ZJ (2011) Phys Chem C 115:23634

    Article  CAS  Google Scholar 

  11. Becke ADJ (1993) Chem Phys 98:5648

    CAS  Google Scholar 

  12. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  13. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley Interscience, New York

    Google Scholar 

  14. Jonas V, Frenking G (1991) Chem Phys Lett 177:175

    Article  CAS  Google Scholar 

  15. Timoshkin A, Frenking GJ (2000) Chem Phys 113:8430

    CAS  Google Scholar 

  16. González L, Mó O, Yáñez M (1996) Chem Phys Lett 263:407

    Article  Google Scholar 

  17. Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157

    Article  CAS  Google Scholar 

  18. Widmark PO, Malmqvist PÅ, Roos BO (1990) Theor Chim Acta 77:291

    Article  CAS  Google Scholar 

  19. Finley J, Malmqvist PA, Roos BO, Serrano-Andres L (1998) Chem Phys Lett 288:299

    Article  CAS  Google Scholar 

  20. Roos BO, Andersson K (1995) Chem Phys Lett 245:215

    Article  CAS  Google Scholar 

  21. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  22. Dunning TH Jr (1007) J Chem Phys 1989:90

    Google Scholar 

  23. Kendall RA, Dunning TH Jr, Harrison RJJ (1992) Chem Phys 96:6796

    CAS  Google Scholar 

  24. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  25. Frisch MJ et al (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford

    Google Scholar 

  26. Aquilante F et al (2010) J Comput Chem 31:224

    Article  CAS  Google Scholar 

  27. Cimas A, Mó O, Yáñez M, Martin N, Corral I (2010) Phys Chem Chem Phys 12:13037

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the DGI Projects No. CTQ2009-13129, by the Project MADRISOLAR2, Ref.: S2009PPQ/1533 of the Comunidad Autónoma de Madrid, and by Consolider on Molecular Nanoscience CSC2007-00010. A generous allocation of computing time at the CCC of the UAM is also acknowledged. R.V. and A.C. gratefully acknowledge financial support from the Erasmus Mundus Programe (FPA 2010-0147) and a Ciência 2008 contract from FCT (Lisbon, Portugal), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Corral.

Additional information

This paper is dedicated to Prof. Ria Broer, a good scientist and a better friend, on occasion of her 60th birthday.

Published as part of the special collection of articles derived from the 8th Congress on Electronic Structure: Principles and Applications (ESPA 2012).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verzeni, R., Mó, O., Cimas, A. et al. MS-CASPT2 study of the low-lying electronic excited states of di-thiosubstituted formic acid dimers. Theor Chem Acc 132, 1338 (2013). https://doi.org/10.1007/s00214-013-1338-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1338-8

Keywords

Navigation