Skip to main content
Log in

Theoretical study of the benzoquinone–tetrathiafulvalene–benzoquinone triad in neutral and oxidized/reduced states

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This work presents a thorough DFT quantum-chemical characterization of the structural and electronic properties of the benzoquinone–tetrathiafulvalene–benzoquinone (Q–TTF–Q) triad in its neutral and oxidized/reduced states. The minimum-energy structure of the triad in its neutral state corresponds to a C 2v boat conformation, although the planar D 2h structure is also found to be a minimum-energy structure practically degenerate with the boat conformation. Upon oxidation, electrons are mainly extracted from the TTF backbone and the boat-shaped TTF structure evolves toward a planar D 2h and to a twisted D 2 conformation in the cation and dication, respectively. The theoretical characterization of the triad in its radical anion and dianion states is performed with several hybrid (B3LYP, PBE0 and BHHLYP), meta-hybrid (M06-2X) and long-range-corrected (CAM-B3LYP, ωB97X and ωB97XD) functionals. In gas phase, BHHLYP, M06-2X, CAM-B3LYP, ωB97X and ωB97XD functionals correctly predict the localized Q–TTF–Q structure as the most stable structure, whereas the hybrid B3LYP and PBE0 functionals lead to a delocalized (Q–TTF–Q) structure. The incorporation of solvent effects is crucial to provide a qualitatively correct description of the anion species where the localized solutions are found to be minimum-energy structures for all the functionals evaluated. The (Q–TTF–Q)2− dianion is predicted to be a biradicaloid species in its electronic ground state. Calculations predict that both Q → Q0 and TTF → Q0 charge-transfer electronic transitions are associated with the low-energy, broad absorption band experimentally observed for the localized Q–TTF–Q anion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferraris J, Walatka V, Perlstei JH, Cowan DO (1973) J Am Chem Soc 95:948–949

    Article  CAS  Google Scholar 

  2. Williams JM, Ferraro JR, Thorn RJ, Carlson KD, Geiser U, Wang HH, Kini AM, Whangbo MH (1992) Organic superconductors (including fullerenes). synthesis, structure, properties, and theory. Prentice Hall, Englewoods Cliffs

    Google Scholar 

  3. Organic Conductors: Fundamentals and Applications (1994). Marcel Dekker, New York

  4. Bendikov M, Wudl F, Perepichka DF (2004) Chem Rev 104:4891–4945

    Article  CAS  Google Scholar 

  5. Gautier N, Dumur F, Lloveras V, Vidal-Gancedo J, Veciana J, Rovira C, Hudhomme P (2003) Angew Chem Int Ed 42:2765–2768

    Article  CAS  Google Scholar 

  6. Dumur F, Gautier N, Gallego-Planas N, Sahin Y, Levillain E, Mercier N, Hudhomme P, Masino M, Girlando A, Lloveras V, Vidal-Gancedo J, Veciana J, Rovira C (2004) J Org Chem 69:2164–2177

    Article  CAS  Google Scholar 

  7. Robin MB, Day P (1968) Adv Inorg Chem Radiochem 10:247–422

    Article  Google Scholar 

  8. Heckmann A, Lambert C (2012) Angew Chem Int Ed 51:326–392

    Article  CAS  Google Scholar 

  9. Hankache J, Wenger OS (2011) Chem Rev 111:5138–5178

    Article  CAS  Google Scholar 

  10. Oton F, Lloveras V, Mas-Torrent M, Vidal-Gancedo J, Veciana J, Rovira C (2011) Angew Chem Int Ed 50:10902–10906

    Article  CAS  Google Scholar 

  11. Kaupp M, Renz M, Parthey M, Stolte M, Wurthner F, Lambert C (2011) Phys Chem Chem Phys 13:16973–16986

    Article  CAS  Google Scholar 

  12. Cohen AJ, Mori-Sanchez P, Yang WT (2008) Science 321:792–794

    Article  CAS  Google Scholar 

  13. Mori-Sánchez P, Cohen AJ, Yang W (2008) Phys Rev Lett 100:146401

    Article  Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02 Gaussian, Inc., Wallingford CT

  15. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  16. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  17. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, Defrees DJ, Pople JA (1982) J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  18. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  19. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  20. Zhao Y, Truhlar D (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  21. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  22. Chai J-D, Head-Gordon M (2008) J Chem Phys 128:084106

    Article  Google Scholar 

  23. Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  24. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094

    Article  CAS  Google Scholar 

  25. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  26. Renz M, Theilacker K, Lambert C, Kaupp M (2009) J Am Chem Soc 131:16292–16302

    Article  CAS  Google Scholar 

  27. Renz M, Kess M, Diedenhofen M, Klamt A, Kaupp M (2012) J Chem Theory Comput 8:4189–4203

    Article  CAS  Google Scholar 

  28. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  29. http://www.chemcraftprog.com

  30. Jamorski C, Casida ME, Salahub DR (1996) J Chem Phys 104:5134–5147

    Article  CAS  Google Scholar 

  31. Petersilka M, Gossmann UJ, Gross EKU (1996) Phys Rev Lett 76:1212–1215

    Article  CAS  Google Scholar 

  32. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439–4449

    Article  CAS  Google Scholar 

  33. Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) J Chem Phys 128:044118

    Article  Google Scholar 

  34. Wiggins P, Williams JAG, Tozer DJ (2009) J Chem Phys 131:091101

    Article  Google Scholar 

  35. Jacquemin D, Perpète E, Ciofini I, Adamo C (2011) Theor Chem Acc 128:127–136

    Article  CAS  Google Scholar 

  36. Aquilante F, De Vico L, Ferré N, Ghigo G, Malmqvist P-å, Neogrády P, Pedersen TB, Pitoňák M, Reiher M, Roos BO, Serrano-Andrés L, Urban M, Urban M, Veryazov V (2010) J Comput Chem 31:224–247

    Article  CAS  Google Scholar 

  37. Ellern A, Bernstein J, Becker JY, Zamir S, Shahal L, Cohen S (1994) Chem Mater 6:1378–1385

    Article  CAS  Google Scholar 

  38. Trotter J (1960) Acta Cryst 13:86–95

    Article  CAS  Google Scholar 

  39. Hargittai I, Brunvoll J, Kolonits M, Khodorkovsky V (1994) J Mol Struct 317:273–277

    Article  CAS  Google Scholar 

  40. Viruela R, Viruela PM, Pou-Amérigo R, Ortí E (1999) Synth Met 103:1991–1992

    Article  CAS  Google Scholar 

  41. Wu Q, Voorhis TV (2006) J Chem Phys 125:164105

    Article  Google Scholar 

  42. Vydrov OA, Scuseria GE (2006) J Chem Phys 125:234109

    Article  Google Scholar 

  43. Borden WT, Davidson ER (1977) J Am Chem Soc 99:4587–4594

    Article  CAS  Google Scholar 

  44. Borden WT, Iwamura H, Berson JA (1994) Acc Chem Res 27:109–116

    Article  CAS  Google Scholar 

  45. Filatov M, Shaik S (1999) J Phys Chem A 103:8885–8889

    Article  CAS  Google Scholar 

  46. Autschbach J (2009) Chem Phys Chem 10:1–5

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Ministry of Economy and Competitiveness (MINECO) (CTQ2009-08790, CTQ2012-31914 and Consolider-Ingenio CSD2007-00010) and the Generalitat Valenciana (PROMETEO/2012/053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Ortí.

Additional information

Published as part of the special collection of articles derived from the 8th Congress on Electronic Structure: Principles and Applications (ESPA 2012).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1809 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calbo, J., Aragó, J. & Ortí, E. Theoretical study of the benzoquinone–tetrathiafulvalene–benzoquinone triad in neutral and oxidized/reduced states. Theor Chem Acc 132, 1330 (2013). https://doi.org/10.1007/s00214-013-1330-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1330-3

Keywords

Navigation