Skip to main content
Log in

Analysis of the origin of lateral interactions in the adsorption of small organic molecules on oxide surfaces

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A decomposition scheme is proposed to analyze the physical contributions to the decrease in the binding energy of chemisorbed species with increasing coverage. This scheme is applied to the acetaldehyde–TiO2 (110) rutile system as a model for other small organic molecule—oxide surface systems. Different density functional theory (DFT) functionals have been employed at both low-medium and high coverages to understand how the different theoretical descriptions of the various terms influence the adsorbate–surface interaction. At low coverages, it is found that the localized adsorbate to surface electron donation is the fundamental physical process that influences the adsorbate–surface interaction. This results shows that while it is usually assumed that only pairwise adsorbate–adsorbate interactions influence the adsorption energy, the progressive modification of the surface properties (surface reduction in this case) may also play a significative role. The DFT+U functional results, in this case, in the best agreement with the experimental binding energy, and the inclusion of the dispersive forces results in largely overestimated adsorption energies. At higher coverages, the pure GGA and GGA+U functionals overestimate the repulsive terms and the computed binding energy is well below the experimental data. The inclusion of the dispersive forces is required to correctly reproduce the experimental results. The contributions of the different physical terms are also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mallat T, Baiker A (2004) Chem Rev 104:3037–3058

    Article  CAS  Google Scholar 

  2. Hashmi ASK, Hutchings GJ (2006) Angew Chem Int Ed 45:7896–7936

    Article  Google Scholar 

  3. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  4. Kubacka A, Bachiller-Baeza B, Colón G, Fernández-García M (2009) J Phys Chem C 113:8553–8555

    Article  CAS  Google Scholar 

  5. Schreiber F (2000) Prog Surf Sci 65:151–256

    Article  CAS  Google Scholar 

  6. Smith RK, Lewis PA, Weiss PS (2004) Prog Surf Sci 75:1–68

    Article  CAS  Google Scholar 

  7. O’Regan B, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  8. Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Grätzel M (1998) Nature 395:583–585

    Article  CAS  Google Scholar 

  9. Hagleitner C, Hierlemann A, Lange D, Kummer A, Kerness N, Brand O, Baltes H (2001) Nature 414:293–296

    Article  CAS  Google Scholar 

  10. Li J, Lu YJ, Ye Q, Cinke M, Han J, Meyyappan M (2003) Nano Lett 3:929–933

    Article  CAS  Google Scholar 

  11. Chorkendor I, Niemantsverdriet J (2003) Concepts of modern catalysis and kinetics. Wiley-VCH, Weinheim

  12. Diebold U (2003) Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  13. Linsebigler AL, Lu GQ, Yates JT (1995) Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  14. Thompson TL, Yates JT (2006) Chem Rev 106:4428–4453

    Article  CAS  Google Scholar 

  15. Sauer ML, Ollis DF (1996) J Catal 158:570–582

    Article  CAS  Google Scholar 

  16. Falconer JL, Magrini-Bair KA (1998) J Catal 179:171–178

    Article  CAS  Google Scholar 

  17. Fujiwara N, Friedrich KA, Stimming U (1999) J Elec Chem 472:120–125

    Article  CAS  Google Scholar 

  18. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269–271

    Article  CAS  Google Scholar 

  19. Deluga GA, Salge JR, Schmidt LD, Verykios XE (2004) Science 303:993–997

    Article  CAS  Google Scholar 

  20. Zehr RT, Henderson MA (2008) Surf Sci 602:2238–2249

    Article  CAS  Google Scholar 

  21. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  22. Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  23. Kresse G, Hafner J (1993) Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  24. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  25. Blöchl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  26. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  27. Harris J (1985) Phys Rev B 31:1770–1779

    Article  CAS  Google Scholar 

  28. Henkelman G, Arnaldsson A, Jonsson H (2006) Comput Mater Sci 36:354–360

    Article  Google Scholar 

  29. Sanville E, Kenny SD, Smith R, Henkelman G (2007) J Comput Chem 28:899–908

    Article  CAS  Google Scholar 

  30. Bader RFW (1985) Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  31. Rasmussen MD, Molina ML, Hammer B (2004) J Chem Phys 120:14583

    Article  Google Scholar 

  32. Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Surf Sci Rep 62:219–270

    Article  CAS  Google Scholar 

  33. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505–1509

    Article  CAS  Google Scholar 

  34. Deskins NA, Rousseau R, Dupuis M (2009) J Phys Chem C 113:14583–14586

    Article  CAS  Google Scholar 

  35. Park JB, Graciani J, Evans J, Stacchiola D, Ma SG, Liu P, Nambu A, Sanz JF, Hrbek J, Rodriguez JA (2009) Proc Natl Acad Sci 106:4975–4980

    Article  CAS  Google Scholar 

  36. Dion M, Rydberg H, Schrder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  37. Klimeš J, Michaelides A (2012) J Chem Phys 137:120901

    Article  Google Scholar 

  38. Román-Pérez G, Soler JM (2009) Phys Rev Lett 103:096102

    Article  Google Scholar 

  39. Klimeš J, Bowler DR, Michaelides A (2011) Phys Rev B 83:195131

    Article  Google Scholar 

  40. Oviedo J, Miguel MAS, Sanz JF (2004) J Chem Phys 121:7427–7433

    Article  CAS  Google Scholar 

  41. Márquez AM, Plata JJ, Sanz JF (2009) J Phys Chem C 113:19973–19980

    Article  Google Scholar 

  42. Henderson MA (2004) J Phys Chem B 108:18932–18941

    Article  CAS  Google Scholar 

  43. Plata JJ, Collico V, Márquez AM, Sanz JF (2011) J Phys Chem C 115:2819–2825

    Article  CAS  Google Scholar 

  44. Koch W, Holthausen MC (2002) A chemist guide to density functional theory. Wiley, Mörlenbach

  45. Tkatchenko A, Romaner L, Hofmann OT, Zojer E, Ambrosch-Draxl C, Scheffler M (2010) MRS Bull 35:435–442

    Article  CAS  Google Scholar 

  46. Göltl F, Hafner J (2011) J Chem Phys 134:064102

    Article  Google Scholar 

  47. Redhead PA (1962) Vacuum 12:203

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministerio de Educación y Ciencia, MEC (project MAT2008-04918) and the Junta de Andalucía (project P08-FQM-03661). Part of the computer time was provided by the Centro Informático Científico de Andalucía (CICA). V. C. thanks Università degli Studi di Milano for a Socrates-Erasmus fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José J. Plata.

Additional information

Published as part of the special collection of articles derived from the 8th Congress on Electronic Structure: Principles and Applications (ESPA 2012).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plata, J.J., Collico, V., Márquez, A.M. et al. Analysis of the origin of lateral interactions in the adsorption of small organic molecules on oxide surfaces. Theor Chem Acc 132, 1311 (2013). https://doi.org/10.1007/s00214-012-1311-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1311-y

Keywords

Navigation