Skip to main content
Log in

Atomistic simulations of an antimicrobial molecule interacting with a model bacterial membrane

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The dynamics of an antimicrobial molecule (end-only oligo(p-phenylene ethynylene) or EO-OPE-1 (C3)) interacting with a model bacterial membrane is simulated using all-atom molecular dynamics. It is found that the molecule spontaneously adheres to the membrane at the membrane–water interface, but no insertion into the bilayer was observed within the nanosecond simulation time. However, when the simulations start from an inserted configuration, this molecule aligns with the lipid molecules in the membrane and interacts strongly through electrostatic interactions with the anionic phosphoryl groups of the lipid molecules. Due to the hydrophobic mismatch between the molecule and lipids, the inserted molecule induces the deformation of the membrane in the form of local thinning. When more than one molecule were inserted, self-assembling was observed on a nanosecond scale. However, no transmembrane pore formation was observed, due presumably to the hydrophobic backbone of the molecule. Implications in the biocidal action of this molecule are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Walsh C (2000) Nature 406:775

    Article  CAS  Google Scholar 

  2. Boman HG (1995) Annu Rev Immunol 13:61

    Article  CAS  Google Scholar 

  3. Zasloff M (2002) Nature 415:389

    Article  CAS  Google Scholar 

  4. Kenawy E-R, Worley SD, Broughton R (2007) Biomacromole 8:1359

    Article  CAS  Google Scholar 

  5. Lewis K, Klibanov AM (2005) Trends Biotechnol 23:343

    Article  CAS  Google Scholar 

  6. Brogden KA (2005) Nat Rev Microbiol 3:238

    Article  CAS  Google Scholar 

  7. Wimley WC (2010) ACS Chem Biol 5:905

    Article  CAS  Google Scholar 

  8. Ji E, Corbitt TS, Parthasarathy A, Schanze KS, Whitten DG (2011) ACS Appl Mater Interfaces 3:2820

    Article  CAS  Google Scholar 

  9. Lu L, Rininsland FH, Wittenburg SK, Achyuthan KE, McBranch DW, Whitten DG (2005) Langmuir 21:10154

    Article  CAS  Google Scholar 

  10. Chemburu S, Corbitt TS, Ista LK, Ji E, Fulghum J, Lopez GP, Ogawa K, Schanze KS, Whitten DG (2008) Langmuir 24:11053

    Article  CAS  Google Scholar 

  11. Tang Y, Zhou Z, Ogawa K, Lopez GP, Schanze KS, Whitten DG (2009) Langmuir 25:21

    Article  Google Scholar 

  12. Zhou Z, Corbitt TS, Parthasarathy A, Tang Y, Ista LK, Schanze KS, Whitten DG (2010) J Phys Chem Lett 1:3207

    Article  CAS  Google Scholar 

  13. Corbitt TS, Ding L, Ji E, Ista LK, Ogawa K, Lopez GP, Schanze KS, Whitten DG (2009) Photochem Photobiol Sci 8:998

    Article  CAS  Google Scholar 

  14. Tang Y, Corbitt TS, Parthasarathy A, Zhou Z, Schanze KS, Whitten DG (2011) Langmuir 27:4956

    Article  CAS  Google Scholar 

  15. Ding L, Chi EY, Chemburu S, Ji E, Schanze KS, Lopez GP, Whitten DG (2009) Langmuir 25:13742

    Article  CAS  Google Scholar 

  16. Ding L, Chi EY, Schanze KS, Lopez GP, Whitten DG (2009) Langmuir 26:5544

    Article  Google Scholar 

  17. Wang Y, Tang Y, Zhou Z, Ji E, Lopez GP, Chi EY, Schanze KS, Whitten DG (2010) Langmuir 26:12509

    Article  CAS  Google Scholar 

  18. Wang Y, Corbitt TS, Jett SD, Tang Y, Schanze KS, Chi EY, Whitten DG (2011) Langmuir 28:65

    Article  Google Scholar 

  19. Leontiadou H, Mark AE, Marrink SJ (2006) J Am Chem Soc 128:12156

    Article  CAS  Google Scholar 

  20. Bond PJ, Parton DL, Clark JF, Sansom MSP (2008) Biophys J 95:3802

    Article  CAS  Google Scholar 

  21. Tieleman DP, MacCallum JL, Ash WL, Kandt C, Xu Z, Monticelli L (2006) J Phys: Condens Matter 18:S1221

    Article  CAS  Google Scholar 

  22. Bolintineanu D, Hazrati E, Davis HT, Lehrer RI, Kaznessis YN (2010) Peptides 31:1

    Article  CAS  Google Scholar 

  23. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD (2010) J Comput Chem 31:671

    CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc., Wallingford CT, vol A.01

  25. Feller SE, Yin D, Pastor RW, MacKerell AD Jr (1997) Biophys J 73:2269

    Article  CAS  Google Scholar 

  26. Feller SE, MacKerell AD (2000) J Phys Chem B 104:7510

    Article  CAS  Google Scholar 

  27. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW (2010) J Phys Chem B 114:7830

    Article  CAS  Google Scholar 

  28. Pastor RW, Brooks BR, Szabo A (1988) Mole Phys 65:1409

    Article  Google Scholar 

  29. Ryckaert JP, Ciccotti G, Berendsen HJ (1977) J Comput Phys 23:327

    Article  CAS  Google Scholar 

  30. Jo S, Lim JB, Klauda JB, Im W (2009) Biophys J 97:50

    Article  CAS  Google Scholar 

  31. Janosi L, Gorfe AA (2010) J Chem Theo Comput 6:3267

    Article  CAS  Google Scholar 

  32. Baysal C, Atilgan AR, Erman B, Bahar İ (1996) Macromole 29:2510

    Article  CAS  Google Scholar 

  33. Chiu S-W, Clark M, Subramaniam S, Jakobsson E (2000) J Comput Chem 21:121

    Article  CAS  Google Scholar 

  34. Duque D, Vega LF (2004) J Chem Phys 121:8611

    Article  CAS  Google Scholar 

  35. Martyna GJ, Tobias DJ, Klein ML (1994) J Chem Phys 101:4177

    Article  CAS  Google Scholar 

  36. Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) J Chem Phys 103:4613

    Article  CAS  Google Scholar 

  37. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089

    Article  CAS  Google Scholar 

  38. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen L (1995) J Chem Phys 103:8577

    Article  CAS  Google Scholar 

  39. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) J Comput Chem 26:1781

    Article  CAS  Google Scholar 

  40. Mitra K, Ubarretxena-Belandia I, Taguchi T, Warren G, Engelman DM (2004) Proc Natl Acad Sci USA 101:4083

    Article  CAS  Google Scholar 

  41. Gawrisch K, Parsegian VA, Hajduk DAT, Tate MW, Gruner SM, Fuller NL, Rand RP (1992) Biochemistry 31:2856

    Article  CAS  Google Scholar 

  42. Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) J Cell Biol 157:1071

    Article  CAS  Google Scholar 

  43. Filippov A, Orädd G, Lindblom G (2009) Chem Phys Lipids 159:81

    Article  CAS  Google Scholar 

  44. Killian JA (1998) Biochim Biophys Acta 1376:401

    Article  CAS  Google Scholar 

  45. Mouritsen OG, Bloom M (1984) Biophys J 46:141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Defense Threat Reduction Agency (HDTRA1-11-1-0004). We thank David Keller and David Whitten for many stimulating discussions. Y.L. thanks Dr. Jianyi Ma for discussing the calculation of the diffusion coefficient.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Guo, H. Atomistic simulations of an antimicrobial molecule interacting with a model bacterial membrane. Theor Chem Acc 132, 1303 (2013). https://doi.org/10.1007/s00214-012-1303-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1303-y

Keywords

Navigation