Skip to main content
Log in

O + C2H4 potential energy surface: lowest-lying singlet at the multireference level

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In previous studies (West et al. in J Phys Chem A 113(45):12663, 2009; West et al. in Theor Chem Acc 131:1123, 2012), the lowest-lying O(3P) + C2H4 and singlet PES near the ·CH2CH2O· biradical were extensively explored at several levels of theory. In this work, the lowest-lying O(1D) + C2H4 PES is further examined at the multiconfigurational self-consistent field (MCSCF), MRMP2, CR-CC(2,3), GVB-PP, and MR-AQCC levels. This study aims to provide a detailed comparison of these different levels of theory for this particular system. In particular, many reactions for this system involve multiple bond rearrangements and require various degrees of both non-dynamic and dynamic correlation for reasonable energetics. As a result of this variety, coupled cluster results parallel but do not always match up with multireference results as previously anticipated. In the case of the CH2CHOH → oxirane pathway, MCSCF results show the possibility of a two-step mechanism rather than an elementary step, but the case is very difficult to elucidate. In the case of the CH3C:–OH → H2CCO + H2 pathway, a non-traditional NEB MEP at the GVB-PP level and MR-AQCC stationary point determination illustrate the need for a complex treatment of this surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. West AC, Kretchmer JS, Sellner B, Park K, Hase WL, Lischka H, Windus TL (2009) O(3P) + C2H4 potential energy surface: study at the multireference level. J Phys Chem A 113(45):12663

    Article  CAS  Google Scholar 

  2. West AC, Lynch JD, Sellner B, Lischka H, Hase WL, Windus TL (2012) O + C2H4 potential energy surface: excited states and biradicals at the multireference level. Theor Chem Acc 131:1123

    Article  Google Scholar 

  3. Casavecchia P, Capozza G, Segoloni E, Leonori F, Balucani N, Volpi Gian G (2005) Dynamics of the O(3P) + C2H4 reaction: identification of five primary product channels (vinoxy, acetyl, methyl, methylene, and ketene) and branching ratios by the crossed molecular beam technique with soft electron ionization. J Phys Chem A 109(16):3527

    Article  CAS  Google Scholar 

  4. Su H, Zhao S, Liu K, Xiang T (2007) The reactions of O(3P) with terminal alkenes: the H2CO channel via 3,2 H-atom shift. J Phys Chem A 111(38):9600

    Article  CAS  Google Scholar 

  5. Lee S-H, Huang W-J, Chen W-K (2007) Dynamics of the reaction of atomic oxygen with ethene: observation of all carbon-containing products by single-photon ionization. Chem Phys Lett 446(4–6):276

    Article  CAS  Google Scholar 

  6. Gardiner WC Jr (ed) (1984) Combustion chemistry. Springer, New York

    Google Scholar 

  7. Yamaguchi K, Yabushita S, Fueno T, Kato S, Morokuma K (1980) Geometry optimization of the ring-opened oxirane diradical: mechanism of the addition reaction of the triplet oxygen atom to olefins. Chem Phys Lett 70(1):27

    Article  CAS  Google Scholar 

  8. Dupuis M, Wendoloski JJ, Takada T, Lester WA Jr (1982) Theoretical study of electrophilic addition: atomic oxygen(3P) + ethylene. J Chem Phys 76(1):481

    Article  CAS  Google Scholar 

  9. Fueno T, Takahara Y, Yamaguchi K (1990) Approximately projected UHF Moeller-Plesset calculations of the potential energy profiles for the reaction of the triplet oxygen atom with ethylene. Chem Phys Lett 167(4):291

    Article  CAS  Google Scholar 

  10. Smith BJ, Nguyen Minh T, Bouma WJ, Radom L (1991) Unimolecular rearrangements connecting hydroxyethylidene (CH3-C-OH), acetaldehyde (CH3-CH:O), and vinyl alcohol (CH2:CH-OH). J Am Chem Soc 113(17):6452

    Article  CAS  Google Scholar 

  11. Jursic BS (1999) Complete basis set ab initio exploring potential energy surface for triplet oxygen reaction with ethylene. THEOCHEM 492:85

    Article  CAS  Google Scholar 

  12. Nguyen TL, Vereecken L, Hou XJ, Nguyen MT, Peeters J (2005) Potential energy surfaces, product distributions and thermal rate coefficients of the reaction of O(3P) with C2H4(X1Ag): a comprehensive theoretical study. J Phys Chem A 109(33):7489

    Article  CAS  Google Scholar 

  13. Yang X, Maeda S, Ohno K (2007) Insight into global reaction mechanism of [C2, H4, O] system from ab initio calculations by the Scaled Hypersphere Search Method. J Phys Chem A 111(23):5099

    Article  CAS  Google Scholar 

  14. Hu W, Lendvay G, Maiti B, Schatz GC (2008) Trajectory surface hopping study of the O(3P) + ethylene reaction dynamics. J Phys Chem A 112(10):2093

    Article  CAS  Google Scholar 

  15. Joshi A, You X, Barckholtz Timothy A, Wang H (2005) Thermal decomposition of ethylene oxide: potential energy surface, master equation analysis, and detailed kinetic modeling. J Phys Chem A 109(35):8016

    Article  CAS  Google Scholar 

  16. Shepler BC, Braams BJ, Bowman JM (2008) “Roaming” dynamics in CH3CHO photodissociation revealed on a global potential energy surface. J Phys Chem A 112(39):9344

    Article  CAS  Google Scholar 

  17. Heazlewood BR, Jordan MJT, Kable SH, Selby TM, Osborn DL, Shepler BC, Braams B, Bowman JM (2008) Roaming is the dominant mechanism for molecular products in acetaldehyde photodissociation. Proc Natl Acad Sci USA Early Ed(Aug 7):1

    Google Scholar 

  18. Shepler BC, Braams BJ, Bowman JM (2007) Quasiclassical trajectory calculations of acetaldehyde dissociation on a global potential energy surface indicate significant non-transition state dynamics. J Phys Chem A 111(34):8282

    Article  CAS  Google Scholar 

  19. Gordon MS, Schmidt MW (2005) Advances in electronic structure theory: GAMESS a decade later. Theory Appl Comput Chem First Forty Years:1167

    Article  Google Scholar 

  20. Ruedenberg K, Sundberg KR (1976) MCSCF studies of chemical reactions: natural reaction orbitals and localized reaction orbitals. In: Calais J-L, Goscinski O, Lindenberg J, Öhrn Y (eds) Quantum science. Plenum Publ. Co., New York, pp 505–515

  21. Cheung LM, Sundberg KR, Ruedenberg K (1978) Dimerization of carbene to ethylene. J Am Chem Soc 100(25):8024. doi:10.1021/ja00493a050

    Article  CAS  Google Scholar 

  22. Cheung LM, Sundberg KR, Ruedenberg K (1979) Electronic rearrangements during chemical reactions. II. Planar dissociation of ethylene. Int J Quantum Chem 16(5):1103. doi:10.1002/qua.560160512

    Article  CAS  Google Scholar 

  23. Ruedenberg K, Schmidt MW, Gilbert MM (1982) Are atoms intrinsic to molecular electronic wavefunctions? II. Analysis for FORS orbitals. Chem Phys 71(1):51. doi:10.1016/0301-0104(82)87005-5

    Article  CAS  Google Scholar 

  24. Ruedenberg K, Schmidt MW, Gilbert MM, Elbert ST (1982) Are atoms intrinsic to molecular electronic wavefunctions? III. Analysis of FORS configurations. Chem Phys 71(1):65. doi:10.1016/0301-0104(82)87006-7

    Article  CAS  Google Scholar 

  25. Ruedenberg K, Schmidt MW, Gilbert MM, Elbert ST (1982) Are atoms intrinsic to molecular electronic wavefunctions? I. The full optimized reaction space (FORS) model. Chem Phys 71(1):41. doi:10.1016/0301-0104(82)87004-3

    Article  CAS  Google Scholar 

  26. Feller DF, Schmidt MW, Ruedenberg K (1982) Concerted dihydrogen exchange between ethane and ethylene. SCF and FORS calculations of the barrier. J Am Chem Soc 104(4):960. doi:10.1021/ja00368a006

    Article  CAS  Google Scholar 

  27. Siegbahn P, Heiberg A, Roos B, Levy B (1980) A comparison of the super-CI and the Newton-Raphson scheme in the complete active space SCF method. Phys Scr 21(3–4):323. doi:10.1088/0031-8949/21/3-4/014

    Article  CAS  Google Scholar 

  28. Roos B (1987) The complete active space self-consistent field method and its applications in electronic structure calculations. Adv Chem Phys Ab Initio Method Quantum Chem, part 2 69:399–455

  29. Roos BO (1992) The multiconfigurational (MC) self-consistent field (SCF) theory. In: Malmqvist PA, Olsen J, Taylor PR, Roos BO, Siegbahn PEM, Helgaker T, Wahlgren U (eds) Lecture notes in quantum chemistry. European summer school in quantum chemistry, lecture notes in chemistry, vol 58. Springer-Verlag, Berlin, pp 177–200

  30. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007

    Article  CAS  Google Scholar 

  31. Ivanic J, Ruedenberg K (2001) Identification of deadwood in configuration spaces through general direct configuration interaction. Theor Chem Acc 106(5):339

    Article  CAS  Google Scholar 

  32. Lengsfield BH III (1980) General second order MCSCF theory: a density matrix directed algorithm. J Chem Phys 73:382

    Article  CAS  Google Scholar 

  33. Fletcher GD (2007) A parallel multi-configuration self-consistent field algorithm. Mol Phys 105(23–24):2971

    Article  CAS  Google Scholar 

  34. Yarkony DR (1981) Comment on the use of augmented Matrix in MCSCF Theory. Chem Phys Lett 77(3):634

    Article  Google Scholar 

  35. Bauschlicher CW Jr (1980) The construction of modified virtual orbitals (MVO’s) which are suited for configuration interaction calculations. J Chem Phys 72(2):880

    Article  CAS  Google Scholar 

  36. Boys SF (1966) Localized orbitals and localized adjustment functions. In: Lödin P-O (ed) Quantum theory of atoms, molecules, and the solid state. A tribute to John C. Slater. Academic Press, New York, pp 253–261

  37. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90(4):2154

    Article  CAS  Google Scholar 

  38. Hirao K (1992) Multireference Moeller-Plesset method. Chem Phys Lett 190(3–4):374

    Article  CAS  Google Scholar 

  39. Szalay PG, Bartlett RJ (1993) Multireference averaged quadratic coupled-cluster method: a size-extensive modification of multi-reference CI. Chem Phys Lett 214(5):481

    Article  CAS  Google Scholar 

  40. Lischka H, Shepard R, Brown FB, Shavitt I (1981) New implementation of the graphical unitary group approach for multireference direct configuration interaction calculations. Int J Quantum Chem Quantum Chem Symp 15:91

    CAS  Google Scholar 

  41. Lischka H, Shepard R, Pitzer RM, Shavitt I, Dallos M, Muller T, Szalay PG, Seth M, Kedziora GS, Yabushita S, Zhang Z (2001) High-level multireference methods in the quantum-chemistry program system COLUMBUS: analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin-orbit CI and parallel CI density. Phys Chem Chem Phys 3(5):664

    Article  CAS  Google Scholar 

  42. Lischka H, Shepard R, Shavitt I, Pitzer RM, Dallos M, Mueller T, Szalay PG, Brown FB, Ahlrichs R, Boehm HJ, Chang A, Comeau DC, Gdanitz R, Dachsel H, Ehrhardt C, Ernzerhof M, Hoechtl P, Irle S, Kedziora G, Kovar T, Parasuk V, Pepper MJM, Scharf P, Schiffer H, Schindler M, Schueler M, Seth M, Stahlberg EA, Zhao J-G, Yabushita S, Zhang Z, Barbatti M, Matsika S, Schuurmann M, Yarkony DR, Brozell SR, Beck EV, Blaudeau J-P, Ruckenbauer M, Sellner B, Plasser M, Szymczak JJ (2010) COLUMBUS, an ab initio electronic structure program, release 5.9.2. www.univie.ac.at/columbus

  43. Piecuch P, Kucharski SA, Kowalski K, Musial M (2002) Efficient computer implementation of the renormalized coupled-cluster methods: the R-CCSD[T], R-CCSD(T), CR-CCSD[T], and CR-CCSD(T) approaches. Comput Phys Commun 149(2):71

    Article  CAS  Google Scholar 

  44. Piecuch P, Wloch M (2005) Renormalized coupled-cluster methods exploiting left eigenstates of the similarity-transformed Hamiltonian. J Chem Phys 123(22):224105/1

    Article  CAS  Google Scholar 

  45. Hay PJ, Hunt WJ, Goddard WA III (1972) Generalized valence bond description of simple alkanes, ethylene, and acetylene. J Amer Chem Soc 94(24):8293

    Article  CAS  Google Scholar 

  46. Hunt WJ, Hay PJ, Goddard WA III (1972) J Chem Phys 57:738

    Article  Google Scholar 

  47. Shepard R, Kedziora GS, Lischka H, Shavitt I, Mueller T, Szalay PG, Kallay M, Seth M (2008) The accuracy of molecular bond lengths computed by multireference electronic structure methods. Chem Phys 349(1–3):37

    Article  CAS  Google Scholar 

  48. Bunge AV (1970) Electronic wavefunctions for atoms. III. Partition of degenerate spaces and ground state of carbon. J Chem Phys 53(1):20

    Article  CAS  Google Scholar 

  49. Pulay P, Fogarasi G, Pongor G, Boggs JE, Vargha A (1983) Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene. J Am Chem Soc 105(24):7037

    Article  CAS  Google Scholar 

  50. Shepard R (1995) The analytic gradient method for configuration interaction wave functions. Adv Ser Phys Chem 2(Modern Electronic Structure Theory, Pt. 1):345–358

    Article  CAS  Google Scholar 

  51. Shepard R, Lischka H, Szalay PG, Kovar T, Ernzerhof M (1992) A general multireference configuration interaction gradient program. J Chem Phys 96(3):2085

    Article  CAS  Google Scholar 

  52. Lischka H, Dallos M, Shepard R (2002) Analytic MRCI gradient for excited states: formalism and application to the n-pi valence- and n-(3 s,3p) Rydberg states of formaldehyde. Mol Phys 100(11):1647

    Article  CAS  Google Scholar 

  53. Mills G, Jonsson H (1994) Quantum and thermal effects in H2 dissociative adsorption: evaluation of free energy barriers in multidimensional quantum systems. Phys Rev Lett 72(7):1124

    Article  CAS  Google Scholar 

  54. Mills G, Jonsson H, Schenter GK (1995) Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf Sci 324(2/3):305

    Article  CAS  Google Scholar 

  55. Henkelman G, Jonsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22):9978

    Article  CAS  Google Scholar 

  56. Gonzalez-Garcia N, Pu J, Gonzalez-Lafont A, Lluch JM, Truhlar DG (2006) Searching for saddle points by using the nudged elastic band method: an implementation for gas-phase systems. J Chem Theory Comput 2(4):895. doi:10.1021/ct060032y

    Article  CAS  Google Scholar 

  57. Anglada JM, Bofill JM (1997) A reduced-restricted-quasi-Newton-Raphson method for locating and optimizing energy crossing points between two potential energy surfaces. J Comput Chem 18(8):992

    Article  CAS  Google Scholar 

  58. Fukui K (1970) Formulation of the reaction coordinate. J Phys Chem 74(23):4161. doi:10.1021/j100717a029

    Article  CAS  Google Scholar 

  59. Fukui K (1981) The path of chemical reactions: the IRC approach. Acc Chem Res 14(12):363. doi:10.1021/ar00072a001

    Article  CAS  Google Scholar 

  60. Sellner B (2011) Photochemistry of organic molecules using high-level multireference methods. Dissertation, University of Vienna

  61. Chao J, Hall KR, Marsh KN, Wilhoit RC (1986) Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties. J Phys Chem Ref 15(4):1369

    CAS  Google Scholar 

  62. Holmes JL, Lossing FP (1982) Heats of formation of ionic and neutral enols of acetaldehyde and acetone. J Am Chem Soc 104(9):2648

    Article  CAS  Google Scholar 

  63. Tsang W (1996) Heats of formation of organic free radicals by kinetic methods. Struct Energ React Chem Ser 4(Energetics of Organic Free Radicals):22–58

    CAS  Google Scholar 

  64. Niiranen JT, Gutman D, Krasnoperov LN (1992) Kinetics and thermochemistry of the acetyl radical: study of the acetyl + hydrogen bromide −> acetaldehyde + bromine atom reaction. J Phys Chem 96(14):5881

    Article  CAS  Google Scholar 

  65. JANAF Thermochemical Tables (1985) National Standard Reference Data Service; US National Bureau of Standards: Washington, p 37

  66. Chase MW Jr (1998) NIST-JANAF thermochemical tables 4th ed. J Phys Chem Ref Data. Mongr 9, American Chemical Society, Washington, DC, p 127

  67. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  68. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623. doi:10.1021/j100096a001

    Article  CAS  Google Scholar 

  69. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56(5):2257. doi:10.1063/1.1677527

    Article  CAS  Google Scholar 

  70. Hariharan PC, Pople JA (1973) Influence of polarization functions on MO hydrogenation energies. Theoret Chim Acta 28(3):213. doi:10.1007/bf00533485

    Article  CAS  Google Scholar 

  71. Chase MW Jr, Davies CA, Downey JR Jr, Frurip DJ, McDonald RA, Syverud AN (1985) JANAF thermochemical tables (Third Edition). J Phys Chem Ref Data 14(1):1–100

    Article  CAS  Google Scholar 

  72. Gurvich LVV, Veyts IV, Alcock CB (1989) Thermodynamic properties of individual substances, Fourth Edition. Hemisphere Pub. Co., New York

    Google Scholar 

  73. Ruscic BBJ, Burcat A, Csaszar AG, Demaison J, Janoschek R, Martin JML, Morton ML, Rossi MJ, Stanton JF, Szalay PG, Westmoreland PR, Zabel F, Berces T (2005) IUPAC critical evaluation of thermochemical properties of selected radicals. Part I. J Phys Chem Ref Data 34(2):573

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Michael W. Schmidt and Mark S. Gordon for help in using the capabilities of GAMESS and MCSCF. This material is based upon work supported by the National Science Foundation under Grant No. OISE-0730114 for the Partnerships in International Research and Education (PIRE) and by the Robert A. Welch Foundation under Grant No. D-0005. TeraGrid resources were provided by the Texas Advanced Computing Center (TACC). Support was also provided by the High-Performance Computing Center (HPCC) at Texas Tech University, under the direction of Philip W. Smith. In addition, this work was supported by the Austrian Science Fund within the framework of the Special Research Program F41 (Vienna Computational Materials Laboratory (ViCoM)). Computer time at the Vienna Scientific Cluster (project no. 70019) is gratefully acknowledged. TLW acknowledges computing resources purchased through funds provided by Ames Laboratory and Iowa State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa L. Windus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2012_1279_MOESM1_ESM.doc

Additional information including the CAS, CR-CC(2,3), GVB-PP, and MR-AQCC geometries, absolute energies, frequencies, ZPE, moments of inertia, and absolute MRMP2 energies along with plots of CASSCF MEPs with single-point MRMP2 and CR-CC(2,3) energies are available free of charge via the Internet at http://pubs.acs.org. (DOC 3375 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, A.C., Lynch, J.D., Sellner, B. et al. O + C2H4 potential energy surface: lowest-lying singlet at the multireference level. Theor Chem Acc 131, 1279 (2012). https://doi.org/10.1007/s00214-012-1279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1279-7

Keywords

Navigation