Skip to main content
Log in

Molecular design of distorted push–pull porphyrins for dye-sensitized solar cells

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A series of distorted push–pull meso-substituted porphyrin analogues with different acceptor groups and additional electron-donating substituents are investigated as organic sensitizers for application in dye-sensitized solar cells (DSSCs) using density functional theory (DFT) and time-dependent DFT approach. The donor was modified by interchanging methyl group with methoxy and extending the π-conjugation. The acceptor group was assessed based on cyanoacrylic (A analogues) or methylenemalonic (B analogues) acid groups. Benchmark calculations using YD1 as reference indicated that the best method to depict the excitation energies was with TD-ωB97X-D exchange–correlation (xc) functional while the computational protocol for computing redox potentials was found to be with the M06-2X xc functional based on vertical ΔSCF method. The absorption spectra of all the porphyrin analogues were red-shifted and produced higher oscillator strengths, especially at the Q-bands as compared to the reference molecule. Among the analogues, A2-OMe and B2-OMe are good candidates for sensitizers in DSSCs due to its larger hyperpolarizabilities, better light-harvesting efficiencies, proper matching of the ground-state oxidation potentials with respect to the \( I^{ - } /I_{3}^{ - } \) redox couple, and higher dipole moment of the adsorbed analogues. This study further enhances the role of theoretical calculations in the molecular design of sensitizers for DSSCs in an effort to produce a highly efficient dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grätzel M (2003) J Photochem Photobiol, C 4:145–153

    Article  Google Scholar 

  2. O’Regan B, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  3. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) J Chem Phys 120:8425–8433

    Article  CAS  Google Scholar 

  4. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Science 334:629–634

    Article  CAS  Google Scholar 

  5. Campbell WM, Jolley KW, Wagner P, Wagner K, Walsh PJ, Gordon KC, Schmidt-Mende L, Nazeeruddin MK, Wang Q, Grätzel M, Officer DL (2007) J Phys Chem C 111:11760–11762

    Article  CAS  Google Scholar 

  6. Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) J Am Chem Soc 130:10720–10728

    Article  CAS  Google Scholar 

  7. Roder B, Buchner M, Ruckmann I, Senge MO (2010) Photochem Photobiol Sci 9:1152–1158

    Article  Google Scholar 

  8. Zhang J, Li H-B, Sun S-L, Geng Y, Wu Y, Su Z-M (2012) J Mater Chem 22:568–576

    Article  CAS  Google Scholar 

  9. Mihi A, Lopez-Alcaraz FJ, Miguez H (2006) Appl Phys Lett 88:193110–193113

    Article  Google Scholar 

  10. Green MA (1982) Solar cells: operating principles, technology, and system applications. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  11. Bisquert J, Cahen D, Hodes G, Rühle S, Zaban A (2004) J Phys Chem B 108:8106–8118

    Article  CAS  Google Scholar 

  12. Rühle S, Greenshtein M, Chen SG, Merson A, Pizem H, Sukenik CS, Cahen D, Zaban A (2005) J Phys Chem B 109:18907–18913

    Article  Google Scholar 

  13. Peng B, Yang S, Li L, Cheng F, Chen J (2010) J Chem Phys 132:034305–034309

    Article  Google Scholar 

  14. Cai ZL, Crossley MJ, Reimers JR, Kobayashi R, Amos RD (2006) J Phys Chem B 110:15624–15632

    Article  CAS  Google Scholar 

  15. Jacquemin D, Perpete EA, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) J Chem Phys 126:144105–144112

    Article  Google Scholar 

  16. Balanay MP, Kim DH (2011) J Phys Chem C 115:19424–19430

    Article  CAS  Google Scholar 

  17. Balanay MP, Lee SH, Yu SC, Kim DH (2011) Bull Korean Chem Soc 32:705–708

    Article  CAS  Google Scholar 

  18. Baer R, Livshits E, Salzner U (2010) Annu Rev Phys Chem 61:85–109

    Article  CAS  Google Scholar 

  19. Karolewski A, Stein T, Baer R, Kummel S (2011) J Chem Phys 134:151101–151104

    Article  CAS  Google Scholar 

  20. Wong BM, Cordaro JG (2008) J Chem Phys 129:214703–214708

    Article  Google Scholar 

  21. Wong BM, Piacenza M, Sala FD (2009) Phys Chem Chem Phys 11:4498–4508

    Article  CAS  Google Scholar 

  22. Stein T, Kronik L, Baer R (2009) J Chem Phys 131:244119

    Article  Google Scholar 

  23. Jacquemin D, Perpete EA, Vydrov OA, Scuseria GE, Adamo C (2007) J Chem Phys 127:094102–094106

    Article  Google Scholar 

  24. Jungsuttiwong S, Yakhanthip T, Surakhot Y, Khunchalee J, Sudyoadsuk T, Promarak V, Kungwan N, Namuangruk S (2012) J Comput Chem 33:1517–1523

    Article  CAS  Google Scholar 

  25. Pastore M, Fantacci S, De Angelis F (2010) J Phys Chem C 114:22742–22750

    Article  CAS  Google Scholar 

  26. Baik M-H, Friesner RA (2002) J Phys Chem A 106:7407–7412

    Article  CAS  Google Scholar 

  27. De Filippo A, Simona F, Annabella S (2008) Nanotechnology 19:424002

    Article  Google Scholar 

  28. Hsieh C-P, Lu H-P, Chiu C-L, Lee C-W, Chuang S-H, Mai C-L, Yen W-N, Hsu S-J, Diau EW-G, Yeh C-Y (2010) J Mater Chem 20:1127–1134

    Article  CAS  Google Scholar 

  29. Chiba M, Tsuneda T, Hirao K (2006) J Chem Phys 124:144106–144111

    Article  Google Scholar 

  30. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540–3544

    Article  CAS  Google Scholar 

  31. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  32. Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Jr. JAM, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision B.01, Gaussian Inc., Wallingford CT

  34. Gorelsky SI (2010) SWizard program version 4.6. University of Ottawa, Canada

    Google Scholar 

  35. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  36. Shkirman SF, Solov’ev KN, Kachura TF, Arabei SA, Skakovskii ED (1999) J Appl Spectrosc 66:68–75

    Article  CAS  Google Scholar 

  37. Gouterman M (1961) J Mol Spectrosc 6:138–163

    Article  CAS  Google Scholar 

  38. Peach MJG, Helgaker T, Salek P, Keal TW, Lutnaes OB, Tozer DJ, Handy NC (2006) Phys Chem Chem Phys 8:558–562

    Article  CAS  Google Scholar 

  39. Balanay MP, Kim DH (2009) J Mol Struct: Theochem 910:20–26

    Article  CAS  Google Scholar 

  40. Kongsted J, Mennucci B, Coutinho K, Canuto S (2010) Chem Phys Lett 484:185–191

    Article  CAS  Google Scholar 

  41. Crescenzi O, Pavone M, De Angelis F, Barone V (2004) J Phys Chem B 109:445–453

    Article  Google Scholar 

  42. Improta R, Barone V (2004) J Am Chem Soc 126:14320–14321

    Article  CAS  Google Scholar 

  43. Zaban A, Mićić OI, Gregg BA, Nozik AJ (1998) Langmuir 14:3153–3156

    Article  CAS  Google Scholar 

  44. Fantacci S, De Angelis F (2011) Coord Chem Rev 255:2704–2726

    Article  CAS  Google Scholar 

  45. De Angelis F, Fantacci S, Selloni A (2008) Nanotechnology 19:424002

    Article  Google Scholar 

  46. Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2002) J Phys Chem B 107:597–606

    Article  Google Scholar 

  47. Balanay MP, Kim DH (2011) Curr Appl Phys 11:109–116

    Article  Google Scholar 

  48. Zhang C-R, Liu Z-J, Chen Y-H, Chen H-S, Wu Y-Z, Feng W, Wang D-B (2010) Curr Appl Phys 10:77–83

    Article  CAS  Google Scholar 

  49. Zhang C-R, Liu Z-J, Chen Y-H, Chen H-S, Wu Y-Z, Yuan L-H (2009) J Mol Struct: Theochem 899:86–93

    Article  CAS  Google Scholar 

  50. Marcano E, Squitieri E, Murgich J, Soscún H (2012) Comput Theor Chem 985:72–79

    Article  CAS  Google Scholar 

  51. Boschloo G, Hagfeldt A (2009) Acc Chem Res 42:1819–1826

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0021818) and the KISTI supercomputing center through the strategic program for supercomputing application research (KSC-2011-C1-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Hee Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5407 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, MJ., Balanay, M.P. & Kim, D.H. Molecular design of distorted push–pull porphyrins for dye-sensitized solar cells. Theor Chem Acc 131, 1269 (2012). https://doi.org/10.1007/s00214-012-1269-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1269-9

Keywords

Navigation