Skip to main content
Log in

A comparative DFT study of the Schiff base formation from acetaldehyde and butylamine, glycine and phosphatidylethanolamine

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Mechanisms for the formation of the Schiff base from acetaldehyde and butylamine, glycine and phosphatidylethanolamine based on Dmol3/DFT calculations were realized. For the case of phosphatidylethanolamine, calculations were done under periodic boundary conditions, in an amine-phospholipid monolayer model with two molecules of phosphatidylethanolamine by cell. All models contained explicit aqueous solvent. In the three cases, a neutral amino group is used to model the nucleophilic attack on the carbonyl group of acetaldehyde, and water molecules form hydrogen bond networks. These networks were involved in the reactions by performing as proton-transfer carriers, important in some steps of reactions, and stabilizing reaction intermediates. In all the studied reactions, they take place in two steps, namely: (1) formation of a carbinolamine and (2) its dehydration to the Schiff base, being the dehydration the rate-determining step of the process, consistent with available experimental evidence for similar reactions. The main difference between the studied reactions is found in the value for relative free energy for the intermediates and transition states in the second step; these values are lower in the cases of glycine and phosphatidylethanolamine in comparison with butylamine, due the influence of their molecular environments. Based on the results, the aminophospholipid surface environment and carboxylic group of glycine may boost Schiff base formation via a neighboring catalyst effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gokhale MY, Kearney WR, Kirsch LE (2009) AAPS PharmSciTech 10:317–328

    CAS  Google Scholar 

  2. Sztanke K, Pasternak K (2003) Ann Univ Mariae Curie Sklodowska Med 58:159–162

    Google Scholar 

  3. Martins SIFS, Van Boekel MAJS (2005) Food Chem 92:437–448

    CAS  Google Scholar 

  4. Knol JJ, Van Loon WAM, Linssen JPH, Ruck AL, Van Boekel M, Voragen AGJ (2005) J Agric Food Chem 53:6133–6139

    CAS  Google Scholar 

  5. Shipar MAH (2004) J Mol Struc-Theochem 710:45–50

    CAS  Google Scholar 

  6. Vázquez MA, Echevarría G, Muñoz F, Donoso J, García Blanco F (1989) J Chem Soc Perkin Trans 2:1617–1622

    Google Scholar 

  7. Donoso J, Muñoz F, Garcia del Vado MA, Echevarría G, García-Espantaleón A, García Blanco F (1986) Biochem J 238:137–144

    CAS  Google Scholar 

  8. Ramasamy R, Yan SF, Schmidt AM (2011) Ann N Y Acad Sci 1243:88–102

    CAS  Google Scholar 

  9. Busch M, Franke S, Rüster C, Wolf G (2010) Eur J Clin Invest 40:742–755

    CAS  Google Scholar 

  10. Miyazawa T, Oak JH, Nakagawa K (2005) Ann N Y Acad Sci 1043:280–283

    CAS  Google Scholar 

  11. Oak JH, Nakagawa K, Oikawa S, Miyazawa T (2003) FEBS Lett 555:419–423

    CAS  Google Scholar 

  12. Vilanova B, Gallardo JM, Caldés C, Adrover M, Ortega-Castro J, Muñoz F, Donoso J (2012) J Phys Chem A 116:1897–1905

    CAS  Google Scholar 

  13. Caldés C, Vilanova B, Adrover M, Muñoz F, Donoso J (2011) Bioorg Med Chem 19:4536–4543

    Google Scholar 

  14. Solís-Calero C, Ortega-Castro J, Muñoz F (2010) J Phys Chem B 114:15879–15885

    Google Scholar 

  15. Salvà A, Donoso J, Frau J, Muñoz F (2002) Int J Quant Chem 89:48–56

    Google Scholar 

  16. Salvà A, Donoso J, Frau J, Muñoz F (2002) J Mol Struc-Theochem 577:229–238

    Google Scholar 

  17. Vázquez MA, Donoso J, Muñoz F, García Blanco F, Garcia del Vado MA, Echevarría G (1991) J Chem Soc Perkin Trans 2:1143–1147

    Google Scholar 

  18. Vázquez MA, Donoso J, Muñoz F, García Blanco F (1991) J Chem Soc Perkin Trans 2:275–281

    Google Scholar 

  19. Vázquez MA, Muñoz F, Donoso J, García Blanco F (1990) Int J Chem Kin 22:905–914

    Google Scholar 

  20. Vázquez MA, Muñoz F, Donoso J, García Blanco F, Garcia del Vado MA, Echevarría G (1990) J Mol Catal 59:137–145

    Google Scholar 

  21. Adrover M, Vilanova B, Muñoz F, Donoso J (2009) Bioorg Chem 37:26–32

    CAS  Google Scholar 

  22. Adrover M, Vilanova B, Muñoz F, Donoso J (2008) Ann N Y Acad Sci 1126:235–240

    CAS  Google Scholar 

  23. Adrover M, Vilanova B, Muñoz F, Donoso J (2007) Int J Chem Kinet 39:154–167

    CAS  Google Scholar 

  24. Adrover M, Vilanova B, Muñoz F, Donoso J (2005) Chem Biodivers 2:964–975

    CAS  Google Scholar 

  25. Murrey SJ, Brecher AS (2010) Digest Diseas Sci 55:21–27

    CAS  Google Scholar 

  26. Tong M, Longato L, Nguyen QG, Chen WC, Spaisman A, de la Monte SM (2011) Oxid Med Cell Longev ID 213286

  27. Seitz HK, Becker P (2007) Alcohol Res Health 30:38–41

    Google Scholar 

  28. Brooks PJ, Theruvathu JA (2005) Alcohol 35:187–193

    CAS  Google Scholar 

  29. Tuma DJ, Casey CA (2003) Alcohol Res Health 27:285–290

    Google Scholar 

  30. Tuma DJ (2002) Free Radic Biol Med 32:303–308

    CAS  Google Scholar 

  31. Yu HS, Oyama T, Isse T, Kitagawa K, Pham TT, Tanaka M, Kawamoto T (2010) Chem Biol Interact 188:367–375

    CAS  Google Scholar 

  32. Abraham J, Balbo S, Crabb D, Brooks PJ (2011) Alcohol Clin Exp Res 35:2113–2120

    CAS  Google Scholar 

  33. Rulten SL, Hodder E, Ripley TL, Stephens DN, Mayne LV (2008) Alcohol Clin Exp Res 32:1186–1196

    CAS  Google Scholar 

  34. Boffetta P, Hashibe M (2006) Lancet Oncol 7:149–156

    CAS  Google Scholar 

  35. Goodlett CR, Horn KH, Zhou FC (2005) Exp Biol Med 230:394–406

    CAS  Google Scholar 

  36. Kharbanda KK, Todero SL, Shubert KA, Sorrell MF, Tuma DJ (2001) Alcohol 25:123–128

    CAS  Google Scholar 

  37. Niemelä O (2001) Free Radic Biol Med 31:1533–1538

    Google Scholar 

  38. Tuma DJ, Thiele GM, Xu D, Klassen LW, Sorrell MF (1996) Hepatology 23:872–880

    CAS  Google Scholar 

  39. Latvala J, Melkko J, Parkkila S, Järvi K, Makkonen K, Niemelä O (2001) Alcohol Clin Exp Res 25:1648–1653

    CAS  Google Scholar 

  40. Rolla R, Vay D, Mottaran E, Parodi M, Traverso N, Aricó S, Sartori M, Bellomo G, Klassen LW, Thiele GM, Tuma DJ, Albano E (2000) Hepatology 31:878–884

    CAS  Google Scholar 

  41. Niemelä O (1993) Scand J Clin Lab Invest 213:45–54

    Google Scholar 

  42. Xu D, Thiele GM, Beckenhauer JL, Klassen LW, Sorrell MF, Tuma DJ (1998) Gastroenterology 115:686–692

    CAS  Google Scholar 

  43. Trudell JR, Ardies CM, Green CE, Allen K (1991) Alcohol Clin Exp Res 15:295–299

    CAS  Google Scholar 

  44. McCaskill ML, Kharbanda KK, Tuma DJ, Reynolds JD, DeVasure JM, Sisson JH, Wyatt TA (2011) Alcohol Clin Exp Res 35:1106–1113

    CAS  Google Scholar 

  45. Setshedi M, Wands JR, Monte SM (2010) Oxid Med Cell Longev 3:178–185

    Google Scholar 

  46. Niemelä O (2007) Novartis Found Symp 285:183–192

    Google Scholar 

  47. Nakamura K, Iwahashi K, Furukawa A, Ameno K, Kinoshita H, Ijiri I, Sekine Y, Suzuki K, Iwata Y, Minabe Y, Mori N (2003) Arch Toxicol 77:591–593

    CAS  Google Scholar 

  48. Thiele GM, Worrall S, Tuma DJ, Klassen LW, Wyatt TA, Nagata N (2001) Alcohol Clin Exp Res 25:218S–224S

    CAS  Google Scholar 

  49. Stevens VJ, Fantl WJ, Newman CB, Sims RV, Cerami A, Peterson CM (1981) J Clin Invest 67:361–369

    CAS  Google Scholar 

  50. Niemelä O, Israel Y (1992) Lab Invest 67:246–252

    Google Scholar 

  51. Braun KP, Pavlovich JG, Jones DR, Peterson CM (1997) Alcohol Clin Exp Res 21:40–43

    CAS  Google Scholar 

  52. Duryee MJ, Klassen LW, Schaffert CS, Tuma DJ, Hunter CD, Garvin RP, Anderson DR, Thiele GM (2010) Free Radic Biol Med 49:1480–1486

    CAS  Google Scholar 

  53. Tuma DJ, Hoffman T, Sorrell MF (1991) Alcohol Alcoholism 1:271–276

    CAS  Google Scholar 

  54. Balbo S, Meng L, Bliss RL, Jensen JA, Hatsukami DK, Hecht SS (2012) Cancer Epidemiol Biomarkers Prev 21:601–608

    CAS  Google Scholar 

  55. Seitz HK, Stickel F (2010) Genes Nutr 5:121–128

    CAS  Google Scholar 

  56. Trudell JR, Ardies CM, Anderson WR (1990) Mol Pharmacol 38:587–593

    CAS  Google Scholar 

  57. Kenney WC (1984) Alcohol Clin Exp Res 8:551–555

    CAS  Google Scholar 

  58. Kenney WC (1982) Alcohol Clin Exp Res 6:412–415

    CAS  Google Scholar 

  59. Fowles LF, Beck E, Worrall S, Shanley BC, de Jersey J (1996) Biochem Pharmacol 51:1259–1267

    CAS  Google Scholar 

  60. Braun KP, Cody RB, Jones DR, Peterson CM (1995) J Biol Chem 270:11263–11266

    CAS  Google Scholar 

  61. Gross MD, Hays R, Gapstur SM, Chaussee M, Potter JD (1994) Alcohol Alcoholism 29:31–41

    CAS  Google Scholar 

  62. Higuchi O, Nakagawa K, Tsuzuki T, Suzuki T, Oikawa S, Miyazawa T (2006) J Lipid Res 47:964–974

    CAS  Google Scholar 

  63. Lukacova V, Peng M, Fanucci G, Tandlich R, Hinderliter A, Maity B, Manivannan E, Cook GR, Balaz S (2007) J Biomol Screen 12:186–202

    CAS  Google Scholar 

  64. Pohle W, Gauger DR, Bohl M, Mrazkova E, Hobza P (2004) Biopolymers 74:27–31

    CAS  Google Scholar 

  65. Barry JA, Gawrisch K (1994) Biochemistry 33:8082–8088

    CAS  Google Scholar 

  66. Mulkidjanian AY, Heberle J, Cherepanov DA (2006) Biochim Biophys Acta 1757:913–930

    CAS  Google Scholar 

  67. Grudinin S, Büldt G, Gordeliy V, Baumgaertner A (2005) Biophys J 88:3252–3261

    CAS  Google Scholar 

  68. Kühlbrandt W (2000) Nature 406:569–570

    Google Scholar 

  69. Mathias G, Marx D (2007) Proc Natl Acad Sci USA 104:6980–6985

    CAS  Google Scholar 

  70. Heberle J, Riesle J, Thiedemann G, Oesterhelt D, Dencher NA (1994) Nature 370:379–382

    CAS  Google Scholar 

  71. Bach D, Wachtel E, Miller IR (2009) Chem Phys Lipids 157:51–55

    CAS  Google Scholar 

  72. Wachtel E, Bach D, Epand RF, Tishbee A, Epand RM (2006) Biochemistry 45:1345–1351

    CAS  Google Scholar 

  73. Fishkin NE, Sparrow JR, Allikmets R, Nakanishi K (2005) Proc Natl Acad Sci USA 102:7091–7096

    CAS  Google Scholar 

  74. Oak JH, Nakagawa K, Miyazawa T (2002) J Lipid Res 43:523–529

    CAS  Google Scholar 

  75. Bouifraden S, Drouot C, Hadrami M, Guenoun F, Lecointe L, Mai N, Paris M, Pothion C, Sadoune M, Sauvagnat B, Amblard M, Aubagnac JL, Calmes M, Chevallet P, Daunis J, Enjalbal C, Fehrentz JA, Lamaty F, Lavergne JP, Lazaro R, Rolland V, Roumestant ML, Viallefont P, Vidal Y, Martinez J (1999) Amino Acids 16:345–379

    CAS  Google Scholar 

  76. O’Donnell JP (1982) Drug Metab Rev 13:123–159

    Google Scholar 

  77. Feeney RE, Blankenhorn G, Dixon HB (1975) Adv Protein Chem 29:135–203

    CAS  Google Scholar 

  78. Mitra J, Metzler DE (1988) Biochim Biophys Acta 965:93–96

    CAS  Google Scholar 

  79. Jirousová J, Davídek J (1975) Zeits Lebens 157:269–276

    Google Scholar 

  80. Eichhorn GL, Marchand D (1956) J Am Chem Soc 78:2688–2691

    CAS  Google Scholar 

  81. Borisova NE, Reshetova MD, Ustynyuk YA (2007) Chem Rev 107:46–79

    CAS  Google Scholar 

  82. Solís-Calero C, Ortega-Castro J, Muñoz F (2011) J Phys Chem C 115:22945–22953

    Google Scholar 

  83. Elder M, Hitchcock P, Mason R, Shipley GG (1977) Proc R Soc London A 354:157–170

    CAS  Google Scholar 

  84. Delley B (2000) J Chem Phys 113:7756–7764

    CAS  Google Scholar 

  85. Delley B (1996) J Phys Chem 100:6107–6110

    CAS  Google Scholar 

  86. Delley B (1990) J Chem Phys 92:508–517

    CAS  Google Scholar 

  87. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Letters 77:3865–3868

    CAS  Google Scholar 

  88. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    CAS  Google Scholar 

  89. Lee CS, Hwang TS, Wang Y, Peng SM, Hwang CS (1996) J Phys Chem 100:2934–2941

    CAS  Google Scholar 

  90. Wang ZG, Zeng QD, Luan YB, Wu XJ, Wan LJ, Wang C, Lee GU, Yin SX, Yang JL, Bai CL (2003) J Phys Chem B 107:13384–13388

    CAS  Google Scholar 

  91. Lin TT, Zhang WD, Huang JC, He CB (2005) J Phys Chem B 109:13755–13760

    CAS  Google Scholar 

  92. Matsuzawa N, Seto J, Dixon DA (1997) J Phys Chem A 101:9391–9398

    CAS  Google Scholar 

  93. Andzelm J, Govind N, Fitzgerald G, Maiti A (2003) Int J Quantum Chem 91:467–473

    CAS  Google Scholar 

  94. Xu X, Goddard WA (2004) J Chem Phys 121:4068–4082

    CAS  Google Scholar 

  95. Fabiano E, Constantin LA, Della Sala F (2010) Phys Rev B 82:113104

    Google Scholar 

  96. del Campo JM, Gázquez JL, Trickey SB, Vela A (2012) J Chem Phys 136:104108

    Google Scholar 

  97. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029–5035

    CAS  Google Scholar 

  98. Halgren TA, Lipscomb WN (1977) Chem Phys Letters 49:225–232

    CAS  Google Scholar 

  99. Murzyn K, Róg T, Pasenkiewicz-Gierula M (2005) Biophys J 88:1091–1103

    CAS  Google Scholar 

  100. McIntosh TJ (1996) Chem Phys Lipids 81:117–131

    CAS  Google Scholar 

  101. Patil MP, Sunoj RB (2007) J Org Chem 72:8202–8215

    CAS  Google Scholar 

  102. Ortega-Castro J, Adrover M, Frau J, Salvà A, Donoso J, Muñoz F (2010) J Phys Chem A 114:4634–4640

    CAS  Google Scholar 

  103. Liao RZ, Ding WJ, Yu JG, Fang WH, Liu RZ (2008) J Comput Chem 29:1919–1929

    CAS  Google Scholar 

  104. Salvà A, Donoso J, Frau J, Muñoz F (2003) J Phys Chem A 107:9409–9414

    Google Scholar 

  105. Hall NE, Smith BJ (1998) J Phys Chem A 102:4930–4938

    CAS  Google Scholar 

  106. Gokhale MY, Kirsch LE (2009) J Pharm Sci 98:4616–4628

    CAS  Google Scholar 

  107. Gokhale MY, Kirsch LE (2009) J Pharm Sci 98:4639–4649

    CAS  Google Scholar 

  108. Baymak MS, Zuman P (2007) Tetrahedron 63:5450–5454

    CAS  Google Scholar 

  109. Muangsiri W, Kearney WR, Teesch LM, Kirsch LE (2005) Int J Pharm 289:133–150

    CAS  Google Scholar 

  110. Cordes EH, Jencks WP (1962) J Am Chem Soc 84:832–837

    CAS  Google Scholar 

  111. Cordes EH, Jencks WP (1962) J Am Chem Soc 84:4319–4328

    CAS  Google Scholar 

  112. Feniouk BA, Cherepanov DA, Junge W, Mulkidjanian AY (1999) FEBS Lett 445:409–414

    CAS  Google Scholar 

  113. Cherepanov DA, Feniouk BA, Junge W, Mulkidjanian AY (2003) Biophys J 85:1307–1316

    CAS  Google Scholar 

  114. Adelroth P, Brzezinski P (2004) Biochim Biophys Acta 1655:102–115

    CAS  Google Scholar 

  115. Nachliel E, Gutman M, Kiryati S, Dencher NA (1996) Proc Natl Acad Sci USA 93:10747–10752

    CAS  Google Scholar 

  116. Levi V, Villamil Giraldo AM, Castello PR, Rossi JP, González Flecha FL (2008) Biochem J 416:145–152

    CAS  Google Scholar 

  117. Cervinka O (1969) Enamines, synthesis, structure and reactions. Marcel Dekker, New York

    Google Scholar 

  118. Kayser RH, Pollack RM (1977) J Am Chem Soc 99:3379–3387

    CAS  Google Scholar 

  119. Pollack RM, Brault M (1976) J Am Chem Soc 98:247–248

    CAS  Google Scholar 

  120. de Carvalho AF, Pilo-Veloso D, Nelson DL (1996) J Braz Chem Soc 7:225–232

    Google Scholar 

  121. Raman A, Christou M, Gorrod JW (1987) Eur J Drug Metab Pharmacokinet 12:279–283

    CAS  Google Scholar 

  122. Godoy-Alcántar C, Yatsimirsky AK, Lehn JM (2005) J Phys Org Chem 18:979–985

    Google Scholar 

  123. Liao RZ, Ding WJ, Yu JG, Fang WH, Liu RZ (2007) J Phys Chem A 111:3184–3190

    CAS  Google Scholar 

  124. Sayer JM, Pinsky B, Schonbrunn A, Washtein W (1974) J Am Chem Soc 96:7998–8009

    CAS  Google Scholar 

  125. Rosenberg S, Silver SM, Sayer JM, Jencks WP (1974) J Am Chem Soc 96:7986–7997

    CAS  Google Scholar 

  126. Teissié J, Prats M, Soucaille P, Tocanne JF (1985) Proc Natl Acad Sci USA 82:3217–3221

    Google Scholar 

  127. Nagle JF, Tristram-Nagle S (1983) J Membrane Biol 74:1–14

    CAS  Google Scholar 

  128. Moncelli MR, Becucci L, Guidelli R (1994) Biophys J 66:1969–1980

    CAS  Google Scholar 

  129. Tobias DJ (2001) Curr Opin Struct Biol 11:253–261

    CAS  Google Scholar 

  130. Tobias DJ (1999) In: Bellissent-Funel MC (ed) Hydration processes in biology: theoretical and experimental approaches. IOS Press, Amsterdam

    Google Scholar 

  131. Flores-Morales P, Gutiérrez-Oliva S, Silva E, Toro-Labbé A (2010) J Mol Struc-Theochem 943:121–126

    CAS  Google Scholar 

  132. Hwang PH, Lian L, Zavras AI (2012) Med Hypotheses 78:197–202

    CAS  Google Scholar 

  133. Warnakulasuriya S, Parkkila S, Nagao T, Preedy VR, Pasanen M, Koivisto H, Niemelä O (2008) J Oral Pathol Med 37:157–165

    Google Scholar 

  134. Hazen SL, Heller J, Hsu FF, d’Avignon A, Heinecke JW (1999) Chem Res Toxicol 12:19–27

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Government in the framework of Project CTQ2008-02207/BQU. One of us (C. S-C) wishes to acknowledge MAE-AECI fellowship from the Spanish Ministry of Foreign Affairs and Cooperation. The authors are grateful to Centro de Cálculo de Computación de Galicia (CESGA), and the Centro de Cálculo de Computación de Cataluña (CESCA), for access to their computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Muñoz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solís-Calero, C., Ortega-Castro, J., Hernández-Laguna, A. et al. A comparative DFT study of the Schiff base formation from acetaldehyde and butylamine, glycine and phosphatidylethanolamine. Theor Chem Acc 131, 1263 (2012). https://doi.org/10.1007/s00214-012-1263-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1263-2

Keywords

Navigation