Skip to main content
Log in

Modelization of vibrational spectra beyond the harmonic approximation from an iterative variation–perturbation scheme: the four conformers of the glycolaldehyde

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This paper presents the computed anharmonic frequencies and IR intensities in the mid-infrared region for the four conformers of glycolaldehyde (Cis cis, Trans trans, Trans gauche and Cis trans forms). The fundamental transitions and their connected overtones and combination bands through strong anharmonic couplings (Fermi resonances) are provided. The results are stemmed from an iterative variational–perturbational resolution of the vibrational problem implemented in the VCI-P code. The four potential electronic surfaces are built as a Taylor series truncated to the fourth order around each minimum geometry. The second derivatives with respect to the normal coordinates were computed at the CCSD(T)/cc-pVTZ level, while the third and fourth derivatives were estimated with the B3LYP/6-31 + G(d,p) model chemistry. For the most stable Cc form, an average deviation of about 10 cm−1 is obtained with respect to the unambiguous experimental values. Furthermore, some of the transitions observed in the CH stretchings region were reassigned. The theoretical values calculated for the Tt and Tg forms are compared to the experimental data obtained from the irradiation of the Cc conformer isolated in Ar matrix with an IR source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sevegney M, Kannan R, Siedle A, Naik R, Naik V (2006) Vib Spectrosc 40:246

    Article  CAS  Google Scholar 

  2. Gagarinov A, Degtyareva O, Khodonov A, Terpugov E (2006) Vib Spectrosc 42:231

    Article  CAS  Google Scholar 

  3. Schweitzer-Stenner R (2006) Vib Spectrosc 42:98

    Article  CAS  Google Scholar 

  4. Zhao W, Gao X, Hao L, Huang M, Huang T, Wu T, Zhang W, Chen W (2007) Vib Spectrosc 44:388

    Article  CAS  Google Scholar 

  5. Portnov A, Ganot Y, Bespachiansky E, Rosenwaks S, Bar I (2006) Vib Spectrosc 42:147

    Article  CAS  Google Scholar 

  6. Xie W, Ye Y, Shen A, Zhou L, Lou Z, Wang X, Hu J (2008) Vib Spectrosc 47:119

    Article  CAS  Google Scholar 

  7. Bramley MJ, Carrington T Jr (1993) J Chem Phys 99:8519

    Article  CAS  Google Scholar 

  8. Dunn KM, Boggs JE, Pulay P (1986) J Chem Phys 85:5838

    Article  CAS  Google Scholar 

  9. Bowman J, Christoffel K, Tobin F (1979) J Phys Chem 83:905

    Article  CAS  Google Scholar 

  10. Christiansen O (2003) J Chem Phys 119:5773

    Article  CAS  Google Scholar 

  11. Cassam-Chenai P, Lievin J (2006) J Comput Chem 27:627

    Article  CAS  Google Scholar 

  12. Christiansen O (2004) J Chem Phys 120:2149

    Article  CAS  Google Scholar 

  13. Iung C, Gatti F, Meyer HD (2004) J Chem Phys 120:6992

    Article  CAS  Google Scholar 

  14. Culot F, Lievin J (1994) Theor Chim Acta 89:227

    Article  CAS  Google Scholar 

  15. Culot F, Laruelle F, Lievin J (1995) Theor Chim Acta 92:211

    CAS  Google Scholar 

  16. Carbonniere P, Dargelos A, Pouchan C (2009) Theor Chem Acc 125:543

    Article  Google Scholar 

  17. Pouchan C, Zaki K (1997) J Chem Phys 107:342

    Article  CAS  Google Scholar 

  18. Senent ML (2004) J Phys Chem A 108:6286

    Article  CAS  Google Scholar 

  19. Ratajczyk T, Pecul M, Sadlej J, Helgaker T (2004) J Phys Chem A 108:2758

    Article  CAS  Google Scholar 

  20. Niki H, Maker PD, Savage CM, Breitenbach LP (1981) Chem Phys Lett 80:499

    Article  CAS  Google Scholar 

  21. Michelsen H, Klaboe P (1969) J Mol Struct 4:293

    Article  CAS  Google Scholar 

  22. Marstokk KM, Mollendal H (1969) J Mol Struct 16:259

    Article  Google Scholar 

  23. Jetzki M, Luckhaus D, Signorell R (2004) Can J Chem 82:915

    Article  CAS  Google Scholar 

  24. Aspiala A, Murto J, Stén P (1986) Chem Phys 106:399

    Article  CAS  Google Scholar 

  25. Ceponkus J, Chin W, Chevalier M, Broquier M, Limongi A, Crepin C (2010) J Chem Phys 133:094502

    Article  Google Scholar 

  26. Raghavachri K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    Article  Google Scholar 

  27. CFOUR, a quantum chemical program package written by Stanton JF, Gauss J, Harding ME, Szalay PG, with contributions from Auer AA, Bartlett RJ, Benedikt U, Berger C, Bernholdt DE, Bomble YJ, Cheng L, Christiansen O, Heckert M, Heun O, Huber C, Jagau TC, Jonsson D, Jusélius J, Klein K, Lauderdale WJ, Matthews DA, Metzroth T, O’Neill DP, Price DR, Prochnow E, Ruud K, Schiffmann F, Schwalbach W, Stopkowicz S, Tajti A, Vázquez J, Wang F, Watts JD and the integral packages MOLECULE (Almlöf J and Taylor PR), PROPS (Taylor PR), ABACUS (Helgaker T, Jensen HJ Aa, Jørgensen P, and Olsen J), and ECP routines by Mitin AV and van Wüllen C. For the current version, see http://www.cfour.de

  28. Gaussian 09, Revision A.1, Frisch MJ, Trucks GW, Schlegel, HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J. A, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian, Inc., Wallingford CT, 2009

  29. Begue D, Carbonniere P, Pouchan C (2005) J Phys Chem A 109:4611

    Article  CAS  Google Scholar 

  30. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr R (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  32. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  33. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724

    Article  CAS  Google Scholar 

  34. Carbonniere P, Barone V (2004) Chem Phys Lett 399:226

    Article  CAS  Google Scholar 

  35. Carbonniere P, Lucca T, Pouchan C, Rega N, Barone V (2005) J Comput Chem 26:384

    Article  CAS  Google Scholar 

  36. Barone V (2005) J Chem Phys 122:014108

    Article  Google Scholar 

  37. Papousek D, Aliev MR (1982) Molecular vibrational rotational spectra. Elsevier, Amsterdam 139

    Google Scholar 

  38. Burcl R, Carter S, Handy NC (2003) Chem Phys Lett 373:357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Philippe Carbonniere or Claude Pouchan.

Additional information

Dedicated to Professor Vincenzo Barone and published as part of the special collection of articles celebrating his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbonniere, P., Pouchan, C. Modelization of vibrational spectra beyond the harmonic approximation from an iterative variation–perturbation scheme: the four conformers of the glycolaldehyde. Theor Chem Acc 131, 1183 (2012). https://doi.org/10.1007/s00214-012-1183-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1183-1

Keywords

Navigation