Skip to main content
Log in

An application of double exponential formula to radial quadrature grid in density functional calculation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We report an application of the double exponential formula to the numerical integration of the radial electron distribution function for atomic and diatomic molecular systems with a quadrature grid. Three types of mapping transformation in the double exponential formula are introduced into the radial quadrature scheme to generate new radial grids. The double exponential grids are examined for the electron-counting integrals of He, Ne, Ar, and Kr atoms which include occupied orbitals up to the 4p shell. The performance of radial grid is compared for the double exponential formula and the formulas proposed in earlier studies. We mainly focus our attention on the behavior of accuracy by the quadrature estimation for each radial grid with varying the mapping parameter and the number of grid points. The convergence behavior of the radial grids with high accuracy for atomic system are also examined for the electron-counting integrals of LiH, NaH, KH, Li2, Na2, K2, HF, HCl, HBr, F2, Cl2, Br2, LiF, NaCl, KBr, [ScH]+, [MnH]+, and [CuH]+ molecules. The results reveal that fast convergence of the integrated values to the exact value is achieved by applying the double exponential formula. It is demonstrated that the double exponential grids show similar or higher accuracies than the other grids particularly for the Kr atom, Br2 molecule, alkali metal hydrides, alkali metal halogenides, and transition metal hydride cations, suggesting that the double exponential transformations have potential ability to improve the reliability and efficiency of the numerical integration for energy functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Becke AD (1988) J Chem Phys 88:2547–2553

    Article  CAS  Google Scholar 

  2. Lebedev VI (1975) Comp Math and Math Phys 15:44–51

    Article  Google Scholar 

  3. Lebedev VI (1976) Comp Math Math Phys 16:10–24

    Article  Google Scholar 

  4. Lebedev VI (1977) Sib Math J 18:99–107

    Article  Google Scholar 

  5. Lebedev VI, Skorokhodov AL (1992) Russ Acad Sci Dokl Math 45:587–592

    Google Scholar 

  6. Lebedev VI (1995) Russ Acad Sci Dokl Math 50:283–286

    Google Scholar 

  7. Lebedev VI, Laikov DN (1999) Dokl Math 59:477–481

    Google Scholar 

  8. Murray CW, Handy NC, Laming GJ (1993) Mol Phys 78:997–1014

    Article  CAS  Google Scholar 

  9. Treutler O, Ahlrichs R (1995) J Chem Phys 102:346–354

    Article  CAS  Google Scholar 

  10. Mura ME, Knowles PJ (1996) J Chem Phys 104:9848–9858

    Article  CAS  Google Scholar 

  11. Gill PMW, Chien S-H (2003) J Comput Chem 24:732–740

    Article  CAS  Google Scholar 

  12. Kakhiani K, Tsereteli K, Tsereteli P (2009) Comput Phys Comm 180:256–268

    Article  CAS  Google Scholar 

  13. Pérez-Jordá JM, Becke AD, San-Fabián E (1994) J Chem Phys 100:6520–6534

    Article  Google Scholar 

  14. Krack M, Köster AM (1998) J Chem Phys 108:3226–3234

    Article  CAS  Google Scholar 

  15. Lin Z, Jaffe JE, Hess AC (1999) J Phys Chem A 103:2117–2127

    Article  CAS  Google Scholar 

  16. Ishikawa H, Yamamoto K, Fujima K, Iwasawa M (1999) Int J Quantum Chem 72:509–523

    Article  CAS  Google Scholar 

  17. Lindh R, Malmqvist P-Å, Gagliardi L (2001) Theor Chem Acc 106:178–187

    Article  CAS  Google Scholar 

  18. Köster AM, Flores-Moreno R, Reveles JU (2004) J Chem Phys 121:681–690

    Article  Google Scholar 

  19. Weber V, Daul C, Baltensperger R (2004) Comput Phys Comm 163:133–142

    Article  CAS  Google Scholar 

  20. El-Sherbiny A, Poirier RA (2004) J Comput Chem 25:1378–1384

    Article  CAS  Google Scholar 

  21. Gill PMW, Johnson BG, Pople JA (1993) Chem Phys Lett 209:506–512

    Article  CAS  Google Scholar 

  22. Chien S-H, Gill PMW (2006) J Comput Chem 27:730–739

    Article  CAS  Google Scholar 

  23. Martin JML, Bauschlicher CW Jr, Ricca A (2001) Comput Phys Comm 133:189–201

    Article  CAS  Google Scholar 

  24. Johnson ER, Wolkow RA, DiLabio GA (2004) Chem Phys Lett 394:334–338

    Article  CAS  Google Scholar 

  25. Papas BN, Schaefer HF III (2006) J Mol Struct THEOCHEM 768:175–181

    Article  CAS  Google Scholar 

  26. Takahashi H, Mori M (1974) Publ RIMS Kyoto Univ 9:721–741. Journal@rchive, Japan Science and Technology Agency (JST). http://www.journalarchive.jst.go.jp/english/jnltop_en.php?cdjournal=kyotoms1969. Accessed 14 Feb 2011

  27. Mori M (1985) J Comput Appl Math 12 & 13:119–130

    Google Scholar 

  28. Mori M, Sugihara M (2001) J Comput Appl Math 127:287–296

    Article  Google Scholar 

  29. Muhammad M, Mori M (2003) J Comput Appl Math 161:431–448

    Article  Google Scholar 

  30. Tanaka K, Sugihara M, Murota K, Mori M (2009) Numer Math 111:631–655

    Article  Google Scholar 

  31. Roots and Weights for MultiExp Quadrature, Quantum Chemistry at ANU. http://www.rsc.anu.edu.au/~pgill/multiexp.php. Accessed 14 Feb 2011

  32. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  33. McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  34. Curtiss LA, McGrath MP, Blandeau J-P, Davis NE, Binning RC, Radom L (1995) J Chem Phys 103:6104–6113

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B.05. Gaussian, Inc., Pittsburgh

    Google Scholar 

  36. Bunge CF, Barrientos JA, Bunge AV (1993) At Data Nucl Data Tables 53:113–162

    Article  CAS  Google Scholar 

  37. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  38. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  39. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  40. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  41. Dill JD, Pople JA (1975) J Chem Phys 62:2921–2923

    Article  CAS  Google Scholar 

  42. Francl MM, Petro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  43. Binning RC Jr, Curtiss LA (1990) J Comput Chem 11:1206–1216

    Article  CAS  Google Scholar 

  44. Blaudeau J-P, McGrath MP, Curtiss LA, Radom L (1997) J Chem Phys 107:5016–5021

    Article  CAS  Google Scholar 

  45. Rassolov VA, Pople JA, Ratner MA, Windus TL (1998) J Chem Phys 109:1223–1229

    Article  CAS  Google Scholar 

  46. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comput Chem 22:976–984

    Article  CAS  Google Scholar 

  47. Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577

    Article  Google Scholar 

  48. Mori M (2005) Publ RIMS Kyoto Univ 41:897–935. Publications of the Research Institute for Mathematical Sciences, Research Institute for Mathematical Sciences, Kyoto University. http://www.kurims.kyoto-u.ac.jp/~prims/list.html. Accessed 14 Feb 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Mitani.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitani, M. An application of double exponential formula to radial quadrature grid in density functional calculation. Theor Chem Acc 130, 645–669 (2011). https://doi.org/10.1007/s00214-011-0985-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0985-x

Keywords

Navigation