Skip to main content
Log in

Hydrogenated amorphous silicon nanostructures: novel structure–reactivity relationships for cyclization and ring opening in the gas phase

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The effects of the reactive center connectivity and internal rotations on the reactivity of hydrogenated silicon nanostructures toward cyclization and ring opening pathways have been investigated. Rate coefficients for 25 cyclization and ring opening reactions for hydrides containing up to eight silicon atoms have been calculated using G3//B3LYP. The overall reactions exhibit two elementary steps. Overcoming the first barrier results in the formation of a hydrogen-bridged cyclic intermediate from a substituted silylene. Passing over the second barrier converts this intermediate into a cyclic silicon hydride. The rate-determining step varied according to the ring size formed and the temperature. Assuming a rate-determining step, values for the single-event Arrhenius pre-exponential factor, \( \tilde{A}\), and the activation energy, E a, were calculated from G3//B3LYP rate coefficients corrected for internal rotations, and a group additivity scheme was developed to predict \( \tilde{A}\) and E a. The values predicted by group additivity are more accurate than structure–reactivity relationships currently used in the literature, which rely on a representative \( \tilde{A}\) value for each reaction class and the Evans-Polanyi correlation to predict E a. Internal rotation corrections played a prominent role in cyclization pathways, impacting \( \tilde{A}\) values for larger ring formation reactions more strongly than any variations in the connectivity of the reactive center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Swihart MT, Girshick SL (1999) J Phys Chem B 103:64–76

    Article  CAS  Google Scholar 

  2. Wong HW, Li X, Swihart MT, Broadbelt LJ (2004) J Phys Chem A 108:10122–10132

    Article  CAS  Google Scholar 

  3. Geng H (2005) Semiconductor manufacturing handbook. McGraw-Hill, USA

    Google Scholar 

  4. Teo BK, Sun XH (2007) Chem Rev 107:1454–1532

    Article  CAS  Google Scholar 

  5. O’Farrell N, Houlton A, Horrocks BR (2006) Int J Nanomed 1:451–472

    Article  Google Scholar 

  6. Stueger H, Fuerpass G, Renger K, Baumgartner J (2005) Organometallics 24:6374–6381

    Article  CAS  Google Scholar 

  7. Morisaki Y, Otaka H, Nagai A, Naka K, Chujo Y (2009) Chem Lett 38:498–499

    Article  CAS  Google Scholar 

  8. Shimoda T, Matsuki Y, Furusawa M, Aoki T, Yudasaka I, Tanaka H, Iwasawa H, Wang DH, Miyasaka M, Takeuchi Y (2006) Nature 440:783–786

    Article  CAS  Google Scholar 

  9. Rosenberg L (2006) Nature 440:749–750

    Article  CAS  Google Scholar 

  10. Hengge E, Janoschek R (1995) Chem Rev 95:1495–1526

    Article  CAS  Google Scholar 

  11. Hengge E, Bauer G (1975) Monatshefte Fur Chemie 106:503–512

    Article  CAS  Google Scholar 

  12. Hengge E, Kovar D (1979) Zeitschrift Fur Anorganische Und Allgemeine Chemie 459:123–130

    Article  CAS  Google Scholar 

  13. Kipping FS, James ES (1921) J Chem Soc 119:830

    CAS  Google Scholar 

  14. Masamune S, Hanzawa Y, Murakami S, Bally T, Blount JF (1982) J Am Chem Soc 104:1150–1153

    Article  CAS  Google Scholar 

  15. West R, Indriksons A (1972) J Am Chem Soc 94:6110–6115

    Article  CAS  Google Scholar 

  16. Carlson CW, West R (1983) Organometallics 2:1801–1807

    Article  CAS  Google Scholar 

  17. Cypryk M, Gupta Y, Matyjaszewski K (1991) J Am Chem Soc 113:1046–1047

    Article  CAS  Google Scholar 

  18. Ishikawa M, Kumada M (1972) J Organomet Chem 42:325–332

    Article  CAS  Google Scholar 

  19. Watanabe H, Shimoyama H, Muraoka T, Kougo Y, Kato M, Nagai Y (1987) Bull Chem Soc Jpn 60:769–770

    Article  CAS  Google Scholar 

  20. Belzner J (1992) J Organomet Chem 430:C51–C55

    Article  CAS  Google Scholar 

  21. Suzuki M, Kotani J, Gyobu S, Kaneko T, Saegusa T (1994) Macromolecules 27:2360–2363

    Article  CAS  Google Scholar 

  22. Ge YB, Head JD (2002) J Phys Chem B 106:6997–7004

    Article  CAS  Google Scholar 

  23. Blinka TA, West R (1986) Organometallics 5:133–139

    Article  CAS  Google Scholar 

  24. Sax AF (1986) Chem Phys Lett 129:66–70

    Article  CAS  Google Scholar 

  25. Sax AF (1986) Chem Phys Lett 127:163–168

    Article  CAS  Google Scholar 

  26. Schoeller WW, Dabisch T (1987) Inorg Chem 26:1081–1086

    Article  CAS  Google Scholar 

  27. Mastryukov VS (1992) Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya I Khimicheskaya Tekhnologiya 35:94–97

    CAS  Google Scholar 

  28. Leong MK, Mastryukov VS, Boggs JE (1994) J Phys Chem 98:6961–6966

    Article  CAS  Google Scholar 

  29. Zhao M, Gimarc BM (1996) Inorg Chem 35:5378–5386

    Article  CAS  Google Scholar 

  30. Mastryukov VS, Hofmann M, Schaefer HF (1999) J Phys Chem A 103:5581–5584

    Article  CAS  Google Scholar 

  31. Swihart MT, Girshick SL (1999) Chem Phys Lett 307:527–532

    Article  CAS  Google Scholar 

  32. Tang MS, Wang CZ, Lu WC, Ho KM (2006) Phys Rev B 74

  33. Singh R (2008) J Phys Condensed Matter 20

  34. Ge YB, Head JD (2004) J Phys Chem B 108:6025–6034

    Article  CAS  Google Scholar 

  35. Balamurugan D, Prasad R (2001) Phys Rev B 64

  36. Galashev AE, Izmodenov IA (2008) Glass Phys Chem 34:173–181

    Article  CAS  Google Scholar 

  37. Li XJ, Li CP, Yang JC, Jalbout AF (2009) Int J Quantum Chem 109:1283–1301

    Article  CAS  Google Scholar 

  38. Li CP, Li XJ, Yang JC (2006) J Phys Chem A 110:12026–12034

    Article  CAS  Google Scholar 

  39. Yang JC, Bai X, Li CP, Xu WG (2005) J Phys Chem A 109:5717–5723

    Article  CAS  Google Scholar 

  40. Li CP, Yang JC, Bai X (2005) Theochem J Mol Struct 755:65–74

    Article  CAS  Google Scholar 

  41. Xu WG, Yang JC, Xiao WS (2004) J Phys Chem A 108:11345–11353

    Article  CAS  Google Scholar 

  42. Katzer G, Sax AF (2002) J Phys Chem A 106:7204–7215

    Article  CAS  Google Scholar 

  43. Katzer G, Ernst MC, Sax AF, Kalcher J (1997) J Phys Chem A 101:3942–3958

    Article  CAS  Google Scholar 

  44. Sax AF, Kalcher J (1991) J Phys Chem 95:1768–1783

    Article  CAS  Google Scholar 

  45. Wong HW, Nieto JCA, Swihart MT, Broadbelt LJ (2004) J Phys Chem A 108:874–897

    Article  CAS  Google Scholar 

  46. Ottosson H, Eklof AM (2008) Coord Chem Rev 252:1287–1314

    Article  CAS  Google Scholar 

  47. Becerra R, Cannady JP, Dormer G, Walsh R (2009) Phys Chem Chem Phys 11:5331–5344

    Article  CAS  Google Scholar 

  48. Kusukawa T, Shike A, Ando W (1996) Tetrahedron 52:4995–5005

    Article  CAS  Google Scholar 

  49. Diez-Gonzalez S, Paugam R, Blanco L (2008) Eur J Organic Chem 19:3298–3307

    Google Scholar 

  50. Xu CH, Wakamiya A, Yamaguchi S (2004) Org Lett 6:3707–3710

    Article  CAS  Google Scholar 

  51. Zhang SG, Liu JH, Zhang WX, Xi ZF (2009) Prog Chem 21:1487–1493

    CAS  Google Scholar 

  52. Liu JH, Zhang WX, Xi ZF (2009) Chin J Org Chem 29:491–503

    Google Scholar 

  53. Trost BM, Bertogg A (2009) Org Lett 11:511–513

    Article  CAS  Google Scholar 

  54. Guida-Pietrasanta F, Boutevin B (2005) Polysilalkylene or silarylene siloxanes said hybrid silicones. Inorganic polymeric nanocomposites and membranes. Springer, Berlin, pp 1–27

    Google Scholar 

  55. Li RE, Sheu JH, Su MD (2007) Inorg Chem 46:9245–9253

    Article  CAS  Google Scholar 

  56. Segmuller T, Schluter PA, Drees M, Schier A, Nogai S, Mitzel NW, Strassner T, Karsch HH (2006) Dianionic amidinates at silicon and germanium centers: four-, six- and eight-membered rings. In: 11th international symposium on inorganic ring systems (IRIS-11). Elsevier, Finland

  57. Broadbelt LJ, Stark SM, Klein MT (1994) Chem Eng Sci 49:4991–5010

    Article  CAS  Google Scholar 

  58. Broadbelt LJ, Stark SM, Klein MT (1996) Comput Chem Eng 20:113–129

    Article  CAS  Google Scholar 

  59. Broadbelt LJ, Stark SM, Klein MT (1995) Ind Eng Chem Res 34:2566–2573

    Article  CAS  Google Scholar 

  60. Broadbelt LJ, Stark SM, Klein MT (1994) Ind Eng Chem Res 33:790–799

    Article  CAS  Google Scholar 

  61. Klinke DJ, Broadbelt LJ (1997) Aiche J 43:1828–1837

    Article  CAS  Google Scholar 

  62. Susnow RG, Dean AM, Green WH, Peczak P, Broadbelt LJ (1997) J Phys Chem A 101:3731–3740

    Article  CAS  Google Scholar 

  63. Broadbelt LJ, Pfaendtner J (2005) Aiche J 51:2112–2121

    Article  CAS  Google Scholar 

  64. Evans MG, Polanyi M (1938) Faraday Soc 34:11–29

    Article  CAS  Google Scholar 

  65. Girshick SL, Swihart MT, Suh SM, Mahajan MR, Nijhawan S (2000) J Electrochem Soc 147:2303–2311

    Article  CAS  Google Scholar 

  66. Ho P, Coltrin ME, Breiland WG (1994) J Phys Chem 98:10138–10147

    Article  CAS  Google Scholar 

  67. Benson SW (1976) Thermochemical kinetics, 2nd edn. Wiley, New York

    Google Scholar 

  68. Sumathi R, Carstensen HH, Green WH (2001) J Phys Chem A 105:6910–6925

    Article  CAS  Google Scholar 

  69. Sumathi R, Carstensen HH, Green WH (2001) J Phys Chem A 105:8969–8984

    Article  CAS  Google Scholar 

  70. Sumathi R, Carstensen HH, Green WH (2002) J Phys Chem A 106:5474–5489

    Article  CAS  Google Scholar 

  71. Saeys M, Reyniers MF, Marin GB, Van Speybroeck V, Waroquier M (2004) Aiche J 50:426–444

    Article  CAS  Google Scholar 

  72. Saeys M, Reyniers MF, Van Speybroeck V, Waroquier M, Marin GB (2006) ChemPhysChem 7:188–199

    Article  CAS  Google Scholar 

  73. Sabbe MK, Reyniers MF, Van Speybroeck V, Waroquier M, Marin GB (2008) ChemPhysChem 9:124–140

    Article  CAS  Google Scholar 

  74. Willems PA, Froment GF (1988) Ind Eng Chem Res 27:1959–1966

    Article  CAS  Google Scholar 

  75. Willems PA, Froment GF (1988) Ind Eng Chem Res 27:1966–1971

    Article  CAS  Google Scholar 

  76. Truong TN (2000) J Chem Phys 113:4957–4964

    Article  CAS  Google Scholar 

  77. Zhang SW, Truong TN (2003) J Phys Chem A 107:1138–1147

    Article  CAS  Google Scholar 

  78. Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) J Chem Phys 110:7650–7657

    Article  CAS  Google Scholar 

  79. Katzer G, Sax AF (2005) J Comput Chem 26:1438–1451

    Article  CAS  Google Scholar 

  80. Katzer G, Sax AF (2003) Chem Phys Lett 368:473–479

    Article  CAS  Google Scholar 

  81. Ayala PY, Schlegel HB (1998) J Chem Phys 108:2314–2325

    Article  CAS  Google Scholar 

  82. Pfaendtner J, Yu X, Broadbelt LJ (2007) Theor Chem Acc 118:881–898

    Article  CAS  Google Scholar 

  83. Van Speybroeck V, Vansteenkiste P, Van Neck D, Waroquier M (2005) Chem Phys Lett 402:479–484

    Article  Google Scholar 

  84. Vansteenkiste P, Van Speybroeck V, Marin GB, Waroquier M (2003) J Phys Chem A 107:3139–3145

    Article  CAS  Google Scholar 

  85. Ashcraft RW, Green WH (2008) J Phys Chem A 112:9144–9152

    Article  CAS  Google Scholar 

  86. Catoire L, Swihart MT, Gail S, Dagaut P (2003) Int J Chem Kinet 35:453–463

    Article  CAS  Google Scholar 

  87. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D01. Gaussian, Inc, Wallingford

    Google Scholar 

  88. Kalcher J, Sax AF (1992) Theochem J Mol Struct 85:287–302

    Article  CAS  Google Scholar 

  89. Adamczyk AJ, Reyniers MF, Marin GB, Broadbelt LJ (2010) ChemPhysChem (in press)

  90. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  91. Vansteenkiste VVS P, Verniest G, De Kimpe N, Waroquier M (2006) J Phys Chem A 110:3838–3844

    Article  Google Scholar 

  92. Martin JML, de Oliveira G (1999) J Chem Phys 111:1843–1856

    Article  CAS  Google Scholar 

  93. McQuarrie DA, Simon JD (1999) Molecular thermodynamics. University Science Book, Sausalito

    Google Scholar 

  94. Hirschfelder JO, Wigner E (1939) J Chem Phys 7:616–628

    Article  CAS  Google Scholar 

  95. Fernandez-Ramos A, Ellingson BA, Meana-Paneda R, Marques JMC, Truhlar DG (2007) Theor Chem Acc 118:813–826

    Article  CAS  Google Scholar 

  96. Truhlar DG, Garrett BC (1984) Annu Rev Phys Chem 35:159–189

    Article  CAS  Google Scholar 

  97. Truhlar DG, Gordon MS (1990) Science 249:491–498

    Article  CAS  Google Scholar 

  98. Adamczyk AJ, Reyniers M-F, Marin GB, Broadbelt LJ (2009) J Phys Chem A 113:10933–10946

    Article  CAS  Google Scholar 

  99. Gupta A, Swihart MT, Wiggers H (2009) Adv Funct Mater 19:696–703

    Article  CAS  Google Scholar 

  100. Wiggers H, Starke R, Roth P (2001) Chem Eng Technol 24:261–264

    Article  CAS  Google Scholar 

  101. Becerra R, Frey HM, Mason BP, Walsh R, Gordon MS (1992) J Am Chem Soc 114:2151–2752

    Article  Google Scholar 

  102. McCarthy MC, Yu Z, Sari L, Schaefer HF, Thaddeus P (2006) J Chem Phys 124:7

    Article  Google Scholar 

  103. Street RA (1991) Hydrogenated amorphous silicon. Cambridge University Press, London

    Book  Google Scholar 

  104. Schulke W (1981) Philos Mag B Phys Condens Matter Stat Mech Electronic Optical Magn Prop 43:451–468

    Google Scholar 

Download references

Acknowledgments

We are grateful for the support of this work by the following organizations: (1) National Science Foundation [(a) Collaborative Research Grant CBET-0500320: International Research and Education in Engineering; (b) NCSA Teragrid Supercomputing Facilities], (2) Laboratory for Chemical Technology at Ghent University in Belgium by way of an international fellowship to Andrew J. Adamczyk, and (3) the ARCS Foundation Inc for fellowship support of Andrew J. Adamczyk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda J. Broadbelt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Tables (DOC 2.23 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamczyk, A.J., Reyniers, MF., Marin, G.B. et al. Hydrogenated amorphous silicon nanostructures: novel structure–reactivity relationships for cyclization and ring opening in the gas phase. Theor Chem Acc 128, 91–113 (2011). https://doi.org/10.1007/s00214-010-0767-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0767-x

Keywords

Navigation