Skip to main content
Log in

Regioselectivity preference of testosterone hydroxylation by cytochrome P450 3A4

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Theoretical studies are presented into the experimentally observed regioselectivity difference of testosterone hydroxylation by cytochrome P450 3A4 at the 1β, 2β, 6β, and 15β positions. Such regioselectivity is investigated by density functional theory calculations on a model system. The barrier heights of hydrogen abstraction, which are corrected by zero-point vibrational energies, are computed to be about 10.1, 13.6, 14.4, and 16.2 kcal/mol for the 6β-, 2β-, 15β-, and 1β-positions, respectively. The calculated barriers suggest the regioselectivity preference of 6β ≫ 2β > 15β > 1β, which is in good agreement with experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1

Similar content being viewed by others

References

  1. Coon MJ (2005) Annu Rev Pharmacol Toxicol 45:1. doi:10.1146/annurev.pharmtox.45.120403.100030

    Article  CAS  Google Scholar 

  2. Ortiz de Montellano PR (2005) In: Ortiz de Montellano PR (ed) Kluwer/Plenum, New York

  3. Guengerich FP (1999) Annu Rev Pharmacol Toxicol 39:1. doi:10.1146/annurev.pharmtox.39.1.1

    Article  CAS  Google Scholar 

  4. Guengerich FP (2005) Montellano Od (ed) In: Cytochrome P450: structure, mechanism and biochemistry. Kluwer/Plenum, New York, pp 377

  5. Evans WE, Relling MV (1999) Science 286:487. doi:10.1126/science.286.5439.487

    Article  CAS  Google Scholar 

  6. Waxman DJ, Attisano C, Guengerich FP, Lapenson DP (1988) Arch Biochem Biophys 263:424. doi:10.1016/0003-9861(88)90655-8

    Article  CAS  Google Scholar 

  7. Krauser JA, Voehler M, Tseng L-H, Schefer AB, Godejohann M, Guengerich FP (2004) Eur J Biochem 271:3962. doi:10.1111/j.1432-1033.2004.04339.x

    Article  CAS  Google Scholar 

  8. Groves JT, McClusky GA (1976) J Am Chem Soc 98:859. doi:10.1021/ja00419a049

    Article  CAS  Google Scholar 

  9. Groves JT, Watanabe Y (1988) J Am Chem Soc 110:8443. doi:10.1021/ja00233a021

    Article  CAS  Google Scholar 

  10. Green MT (1999) J Am Chem Soc 121:7939. doi:10.1021/ja991541v

    Article  CAS  Google Scholar 

  11. Loew GH, Harris DL (2000) Chem Rev 100:407. doi:10.1021/cr980389x

    Article  CAS  Google Scholar 

  12. Ogliaro F, Cohen S, Filatov M, Harris N, Shaik S (2000) Angew Chem Int Ed Engl 39:3851. doi:10.1002/1521-3773(20001103)39:21<3851::AID-ANIE3851>3.0.CO;2-9

    Article  CAS  Google Scholar 

  13. Ohta T, Matsuura K, Yoshizawa K, Morishima I (2000) J Inorg Biochem 82:141. doi:10.1016/S0162-0134(00)00162-8

    Article  CAS  Google Scholar 

  14. Schöneboom JC, Lin H, Reuter N, Thiel W, Cohen S, Ogliaro F et al (2002) J Am Chem Soc 124:8142. doi:10.1021/ja026279w

    Article  Google Scholar 

  15. Guallar V, Baik M-H, Lippard SJ, Friesner RA (2003) Proc Natl Acad Sci USA 100:6998. doi:10.1073/pnas.0732000100

    Article  CAS  Google Scholar 

  16. Bathelt CM, Zurek J, Mulholland AJ, Harvey JN (2005) J Am Chem Soc 127:12900. doi:10.1021/ja0520924

    Article  CAS  Google Scholar 

  17. Schöneboom JC, Neese F, Thiel W (2005) J Am Chem Soc 127:5840. doi:10.1021/ja0424732

    Article  Google Scholar 

  18. Harris N, Cohen S, Filatov M, Ogliaro F, Shaik S (2000) Angew Chem Int Ed 39:2003. doi:10.1002/1521-3773(20000602)39:11<2003::AID-ANIE2003>3.0.CO;2-M

    Article  CAS  Google Scholar 

  19. Kamachi T, Yoshizawa K (2003) J Am Chem Soc 125:4652. doi:10.1021/ja0208862

    Article  CAS  Google Scholar 

  20. Park JY, Harris D (2003) J Med Chem 46:1645. doi:10.1021/jm020538a

    Article  CAS  Google Scholar 

  21. Guallar V, Friesner RA (2004) J Am Chem Soc 126:8501. doi:10.1021/ja036123b

    Article  CAS  Google Scholar 

  22. Schöneboom JC, Cohen S, Lin H, Shaik S, Thiel W (2004) J Am Chem Soc 126:4017. doi:10.1021/ja039847w

    Article  Google Scholar 

  23. Altun A, Guallar V, Friesner RA, Shaik S, Thiel W (2006) J Am Chem Soc 128:3924. doi:10.1021/ja058196w

    Article  CAS  Google Scholar 

  24. Bach RD, Dmitrenko O (2006) J Am Chem Soc 128:1474. doi:10.1021/ja052111+

    Article  CAS  Google Scholar 

  25. Wang Y, Wang H, Wang Y, Yang C, Yang L, Han K (2006) J Phys Chem B 110:6154. doi:10.1021/jp060033m

    Article  CAS  Google Scholar 

  26. Warshel A, Levitt M (1976) J Mol Biol 103:227. doi:10.1016/0022-2836(76)90311-9

    Article  CAS  Google Scholar 

  27. Lin H, Truhlar DG (2007) Theor Chem Acc 117:185. doi:10.1007/s00214-006-0143-z

    Article  CAS  Google Scholar 

  28. Senn HM, Thiel W (2007) Top Curr Chem 268:173. doi:10.1007/128_2006_084

    Article  CAS  Google Scholar 

  29. Singh UC, Kollman PA (1984) J Comput Chem 5:129. doi:10.1002/jcc.540050204

    Article  CAS  Google Scholar 

  30. Gao J, Thompson MA (eds) (1998) Combined quantum mechanical and molecular mechanical methods: ACS symposium series 712. American Chemical Society, Washington

  31. Field MJ, Bash PA, Karplus M (1990) J Comput Chem 11:700. doi:10.1002/jcc.540110605

    Article  CAS  Google Scholar 

  32. Shaik S, Kumar D, de Visser SP, Altun A, Thiel W (2005) Chem Rev 105:2279. doi:10.1021/cr030722j

    Article  CAS  Google Scholar 

  33. Shaik S, Filatov M, Schröder D, Schwarz H (1998) Chem Eur J 4:193. doi:10.1002/(SICI)1521-3765(19980210)4:2<193::AID-CHEM193>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  34. Kumar D, de Visser SP, Shaik S (2003) J Am Chem Soc 125:13024. doi:10.1021/ja036906x

    Article  CAS  Google Scholar 

  35. Newcomb M, Toy PH (2000) Acc Chem Res 33:449. doi:10.1021/ar960058b

    Article  CAS  Google Scholar 

  36. Newcomb M, Aebisher D, Shen R, Chandrasena REP, Hollenberg PF, Coon MJ (2003) J Am Chem Soc 125:6064. doi:10.1021/ja0343858

    Article  CAS  Google Scholar 

  37. de Visser SP, Ogliaro F, Harris N, Shaik S (2001) J Am Chem Soc 123:3037. doi:10.1021/ja003544+

    Article  Google Scholar 

  38. Hirao H, Kumar D, Thiel W, Shaik S (2005) J Am Chem Soc 127:13007. doi:10.1021/ja053847+

    Article  CAS  Google Scholar 

  39. Ekroos M, Sjögren T (2006) Proc Natl Acad Sci USA 103:13682. doi:10.1073/pnas.0603236103

    Article  CAS  Google Scholar 

  40. Becke AD (1988) Phys Rev A 38:3098. doi:10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  41. Becke AD (1993) J Chem Phys 98:5648. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  42. Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter 37:785. doi:10.1103/PhysRevB.37.785

    CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian03 b01. Gaussian Inc., Pittsburgh

  44. Hay PJ, Wadt WR (1985) J Chem Phys 82:299. doi:10.1063/1.448975

    Article  CAS  Google Scholar 

  45. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724. doi:10.1063/1.1674902

    Article  CAS  Google Scholar 

  46. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257. doi:10.1063/1.1677527

    Article  CAS  Google Scholar 

  47. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, DeFrees DJ, Pople JA et al (1982) J Chem Phys 77:3654. doi:10.1063/1.444267

    Article  CAS  Google Scholar 

  48. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer Pv R (1983) J Comput Chem 4:294. doi:10.1002/jcc.540040303

    Article  CAS  Google Scholar 

  49. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265. doi:10.1063/1.447079

    Article  CAS  Google Scholar 

  50. Wigner E (1932) Z Physik Chem Br 19:203

    Google Scholar 

  51. Skodje RT, Truhlar DG (1981) J Phys Chem 85:624. doi:10.1021/j150606a003

    Article  CAS  Google Scholar 

  52. Skodje RT, Truhlar DG, Garrett BC (1981) J Phys Chem 85:3019. doi:10.1021/j150621a001

    Article  CAS  Google Scholar 

  53. Filatov M, Shaik NHS (1999) Angew Chem Int Ed 38:3510. doi:10.1002/(SICI)1521-3773(19991203)38:23<3510::AID-ANIE3510>3.0.CO;2-#

    Article  CAS  Google Scholar 

  54. Hammond GS (1955) J Am Chem Soc 77:334. doi:10.1021/ja01607a027

    Article  CAS  Google Scholar 

  55. Krauser JA, Guengerich FP (2005) J Biol Chem 280:19496. doi:10.1074/jbc.M501854200

    Article  CAS  Google Scholar 

  56. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771. doi:10.1021/jp953748q

    Article  CAS  Google Scholar 

  57. Miller WH, Handy NC, Adams JE (1980) J Chem Phys 72:99. doi:10.1063/1.438959

    Article  CAS  Google Scholar 

  58. Truhlar DG, Gordon MS (1990) Science 249:491. doi:10.1126/science.249.4968.491

    Article  CAS  Google Scholar 

  59. Kim Y, Corchado JC, Villa J, Xing J, Truhlar DG (2000) J Chem Phys 112:2718. doi:10.1063/1.480846

    Article  CAS  Google Scholar 

  60. Albu TV, Corchado JC, Truhlar DG (2001) J Phys Chem A 105:8465. doi:10.1021/jp011951h

    Article  CAS  Google Scholar 

  61. Truhlar DG (2002) J Phys Chem A 106:5048. doi:10.1021/jp0143342

    Article  CAS  Google Scholar 

  62. Lin H, Pu JZ, Albu TV, Truhlar DG (2004) J Phys Chem A 108:4112. doi:10.1021/jp049972+

    Article  CAS  Google Scholar 

  63. Kim KH, Kim Y (2004) J Chem Phys 120:623. doi:10.1063/1.1630305

    Article  CAS  Google Scholar 

  64. Lin H, Zhao Y, Tishchenko O, Truhlar DG (2006) J Chem Theory Comput 2:1237. doi:10.1021/ct600171u

    Article  CAS  Google Scholar 

  65. Tishchenko O, Truhlar DG (2006) J Phys Chem A 110:13530. doi:10.1021/jp0640833

    Article  CAS  Google Scholar 

  66. Higashi M, Truhlar DG (2008) J Chem Theory Comput 4:790. doi:10.1021/ct800004y

    Article  CAS  Google Scholar 

  67. Ogliaro F, Cohen S, de Visser SP, Shaik S (2000) J Am Chem Soc 122:12892. doi:10.1021/ja005619f

    Article  CAS  Google Scholar 

  68. Altun A, Shaik S, Thiel W (2006) J Comput Chem 27:1324. doi:10.1002/jcc.20398

    Article  CAS  Google Scholar 

  69. Yano JK, Wester MR, Schoch GA, Griffin KJ, Stout CD, Johnson EF (2004) J Biol Chem 279:38091. doi:10.1074/jbc.C400293200

    Article  CAS  Google Scholar 

  70. Williams PA, Cosme J, Vinkovic DM, Ward A, Angove HC, Day PJ et al (2004) Science 305:683. doi:10.1126/science.1099736

    Article  CAS  Google Scholar 

  71. de Visser SP, Kumar D, Cohen S, Shacham R, Shaik S (2004) J Am Chem Soc 126:8362. doi:10.1021/ja048528h

    Article  Google Scholar 

  72. Olsen L, Rydberg P, Rod TH, Ryde U (2006) J Med Chem 49:6489. doi:10.1021/jm060551l

    Article  CAS  Google Scholar 

  73. Singh SB, Shen LQ, Walker MJ, Sheridan RP (2003) J Med Chem 46:1330. doi:10.1021/jm020400s

    Article  CAS  Google Scholar 

  74. Korzekwa KR, Jones JP, Gillette JR (1990) J Am Chem Soc 112:7042. doi:10.1021/ja00175a040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the Research Corporation. We thank the National Cancer Institute-Frederick Advanced Biomedical Computing Center for providing CPU time and access to the Gaussian03 program. We thank Dr. Hoyt Meyer for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 (PDF 439 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Morisetti, P., Kim, J. et al. Regioselectivity preference of testosterone hydroxylation by cytochrome P450 3A4. Theor Chem Account 121, 313–319 (2008). https://doi.org/10.1007/s00214-008-0480-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-008-0480-1

Keywords

Navigation