Skip to main content
Log in

A theoretical study of thermodynamics and kinetics of nitrosamines: a potential no carrier

Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this theoretical study, several hybird DFT functionals and MP2 method are used to investigate the properties and the kinetics of a series of nitrosamines. The results show SN or NS transnitrosation reaction to be more favorable via an SN2-like pathway. The stability is predicted to be in the order of H2NNO > cis-MeHNNO > trans-MeHNNO > Me2NNO > trans-PhHNNO > cis-PhHNNO > cis-MeSNO > Ph2NNO > N-methylenenitrous amide, in which Ph2NNO and N-methylenenitrous amide will be potential candidates for the NO donor. For N-methylenenitrous amide, which has the strongest NO donating strength among the titled nitroamines, a nearly perpendicular configuration between H2C=N and NO can plausibly be rationalized by the fact that lone pair of the nitrogen atom on the fragment H2CN must be π-type, not σ-type, to form a mesomeric effect with π*N-O of the NO group. Using the polarizable continuum model to consider the water solvent effect, all the barriers and endothermicities of the transnitrosation reactions are decreased and the correlated %N–H and %N–S are decreased and increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Ignarro LJ (1989) Circ Res 65:1

    CAS  Google Scholar 

  2. Osanai T, Fujiwara N, Saitoh M, Sasaki S, Tomita H, Nakamura M, Osawa H, Yamabe H, Okumura K (2002) Blood Purif 20:466

    Article  CAS  Google Scholar 

  3. Ignarro LJ, Buga GM, Word KS, Byrns RE, Chaudhuri G (1987) Proc Natl Acad Sci USA 84:9265

    Article  CAS  Google Scholar 

  4. Furchgott RF, Zawadzki JV (1980) Nature 288:373

    Article  CAS  Google Scholar 

  5. Pfeiffer S, Mayer B, Hemmens B (1999) Angew Chem Int Ed 38:1714

    Article  Google Scholar 

  6. Fujimori K, Nakajima T (2000) Rev Heteratom Chem 22:181

    CAS  Google Scholar 

  7. Williams DLH (1999) Acc Chem Res 32:869

    Article  CAS  Google Scholar 

  8. Feldman PL, Griffith OW, Stuehr DJ (1993) Chem Eng News Dec 20:26

    Google Scholar 

  9. Lü JM, Wittbrodt JM, Wang K, Wen Z, Schlegel BH, Wang PG, Cheng JP (2001) J Am Chem Soc 123:2903

    Article  CAS  Google Scholar 

  10. Al-Sa’Doni H, Ferro A (2000) Clin Sci 98:507

    Article  CAS  Google Scholar 

  11. de Belder AJ, MacAllistr R, Radomski MW, Moncada S, Valence PJ (1994) Cardiovasc Res 28:691

    Article  CAS  Google Scholar 

  12. Bryan NS, Rassaf T, Maloney RE, Rodriguez CM, Saijo F, Rodriguez JR, Feelisch M (2004) Proc Natl Acad Sci USA 101:4308

    Article  CAS  Google Scholar 

  13. Turjanski AG, Leonik F, Estrin DA, Rosenstein RE, Doctorovich F (2000) J Am Chem Soc 122:10468

    Article  CAS  Google Scholar 

  14. Sonnenschein K, de Groot H, Kirsch M (2004) J Biol Chem 279:45433

    Article  CAS  Google Scholar 

  15. Li J, Wang GP, Schlegel HB (2006) Org Biomol Chem 4:1352

    Article  CAS  Google Scholar 

  16. Yanagimoto T, Toyota T, Matsuki N, Makino Y, Uchiyama S, Ohwada T (2007) J Am Chem Soc 129:736

    Article  CAS  Google Scholar 

  17. Lai C-H, Li EY, Chou P-T (2007) Theor Chem Acc 117:145

    Article  CAS  Google Scholar 

  18. Bharatam PV, Amita (2002) Tetrahedron Lett 43:8289

    Article  CAS  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreyen JrT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Octhterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc., Pittsburgh PA

    Google Scholar 

  20. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503

    Article  CAS  Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  22. Adamo C, Barone V (1998) J Chem Phys 108:664

    Article  CAS  Google Scholar 

  23. Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) J Phys Chem A 104:4811

    Article  CAS  Google Scholar 

  24. Handy NC, Pople JA, Head-Gordon M, Raghavachari K, Trucks GW (1989) Chem Phys Lett 164:185

    Article  CAS  Google Scholar 

  25. Carpenter JE, Weinhold F (1988) Theochem 169:41

    Article  Google Scholar 

  26. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  27. Al-Mustafa AH, Sies H, Stahl W (2001) Toxicology 163:127

    Article  CAS  Google Scholar 

  28. Lisa A, Peterson LA, Wagener T, Sies H, Stahl W (2007) Chem Res Toxicol 20:721

    Article  CAS  Google Scholar 

  29. Adam C, Garcia-Rio L, Leis JR, Ribeiro L (2005) J Org Chem 70:6353

    Article  CAS  Google Scholar 

  30. Bartberger MD, Houk KN, Powell SC, Mannion JD, Lo KY, Stamler JS, Toone EJ (2000) J Am Chem Soc 122:5889

    Article  CAS  Google Scholar 

  31. Fu Y, Mou Y, Lin B-L, Liu L, Guo Q-X (2002) J Phys Chem A 106:12386

    Article  CAS  Google Scholar 

  32. Baciu C, Gauld JW (2003) J Phys Chem A 107:9946

    Article  CAS  Google Scholar 

  33. West R (2004) Science 1724

  34. Zhu XQ, He JQ, Li Q, Xian M, Lu J, Cheng JP (2000) J Org Chem 65:6729

    Article  CAS  Google Scholar 

  35. Cheng JP, Xian M, Wang K, Zhu X, Yin Z, Wang PG (1998) J Am Chem Soc 120:10266

    Article  CAS  Google Scholar 

  36. Bulter AR, Williams DLH (1993) Chem Soc Rev 22:233

    Article  Google Scholar 

  37. Lü JM, Wittbrodt JM, Wang K, Wen Z, Schlegel BH, Wang PG, Cheng JP (2001) J Am Chem Soc 123:2903

    Article  CAS  Google Scholar 

  38. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764

    Article  CAS  Google Scholar 

  39. Lai C-H, Chou P-T (2007) J Mol Model ASAP

  40. Houk KN, Hietbrink BN, Bartberger MD, McCarren PR, Cho BY, Voyksner RD, Stamler JS, Toone EJ (2003) J Am Chem Soc 125:6972

    Article  CAS  Google Scholar 

  41. Chen TS, Plummer PLM (1985) J Phys Chem 89:3689

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Hung Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, CH., Chou, PT. A theoretical study of thermodynamics and kinetics of nitrosamines: a potential no carrier. Theor Chem Account 119, 453–462 (2008). https://doi.org/10.1007/s00214-007-0403-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0403-6

Keywords

Navigation