Skip to main content
Log in

Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The introduction of the resolution-of-the-identity (RI) approximation for electron repulsion integrals in quantum chemical calculations requires in addition to the orbital basis so-called auxiliary or fitting basis sets. We report here such auxiliary basis sets optimized for second-order Møller–Plesset perturbation theory for the recently published (Weigend and Ahlrichs Phys Chem Chem Phys, 2005, 7, 3297–3305) segmented contracted Gaussian basis sets of split, triple-ζ and quadruple-ζ valence quality for the atoms Rb–Rn (except lanthanides). These basis sets are designed for use in connection with small-core effective core potentials including scalar relativistic corrections. Hereby accurate resolution-of-the-identity calculations with second-order Møller–Plesset perturbation theory (MP2) and related methods can now be performed for molecules containing elements from H to Rn. The error of the RI approximation has been evaluated for a test set of 385 small and medium sized molecules, which represent the common oxidation states of each element, and is compared with the one-electron basis set error, estimated based on highly accurate explicitly correlated MP2–R12 calculations. With the reported auxiliary basis sets the RI error for MP2 correlation energies is typically two orders of magnitude smaller than the one-electron basis set error, independent on the position of the atoms in the periodic table.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlrichs R, Bär M, Häser M, Horn H, Kömel C (1989). Chem Phys Lett 162:164–169

    Article  Google Scholar 

  2. Andrae D, Häussermann U, Dolg M, Stoll H, Preuss H (1990). Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  3. Bachorz R, Klopper W, Gutowski M (2007) (to be published)

  4. Dolg M, Stoll H, Preuss H (1989). Theor Chim Acta 75:173–194

    Article  CAS  Google Scholar 

  5. Dunlap BI, Connolly JWD, Sabin JR (1979). J Chem Phys 71:3396–3402

    Article  CAS  Google Scholar 

  6. Dunning TH (1989). J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  7. Dunning TH, Peterson KA, Wilson AK (2001). J Chem Phys 114:9244–9253

    Article  CAS  Google Scholar 

  8. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997). Theor Chem Acc 97:119–124

    CAS  Google Scholar 

  9. Haase F, Ahlrichs R (1993). J Comp Chem 14:907–912

    Article  CAS  Google Scholar 

  10. Häser M, Ahlrichs R (1989). J Comput Chem 10:104–111

    Article  Google Scholar 

  11. Hättig C (2005). Phys Chem Chem Phys 7:59–66

    Article  Google Scholar 

  12. Hättig C, Weigend F (2000). J Chem Phys 113:5154–5162

    Article  Google Scholar 

  13. Kaupp M, Schleyer PV, Stoll H, Preuss H (1991). J Chem Phys 94:1360–1366

    Article  CAS  Google Scholar 

  14. Kendall RA, Dunning TH, Harrison RJ (1992). J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  15. Klopper W (1991). Chem Phys Lett 186:583–585

    Article  CAS  Google Scholar 

  16. Klopper W, Kutzelnigg W (1987). Chem Phys Lett 134:17–22

    Article  CAS  Google Scholar 

  17. Klopper W, Manby FR, Ten-no S, Valeev EF (2006). Int Rev Phys Chem 25:427–468

    Article  CAS  Google Scholar 

  18. Leininger T, Nicklass A, Küchle W, Stoll H, Dolg M, Bergner A (1996). Chem Phys Lett 255:274–280

    Article  CAS  Google Scholar 

  19. Manby FR (2003). J Chem Phys 119:4607–4613

    Article  CAS  Google Scholar 

  20. Metz B, Stoll H, Dolg M (2000). J Chem Phys 113:2563–2569

    Article  CAS  Google Scholar 

  21. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11, 113–11, 123

    Google Scholar 

  22. Schäfer A, Huber C, Ahlrichs R (1994). J Chem Phys 100: 5829–5835

    Article  Google Scholar 

  23. Vahtras O, Almlöf JE, Feyereisen MW (1993). Chem Phys Lett 213:514–518

    Article  CAS  Google Scholar 

  24. Villani C, Klopper W (2005). J Phys B 38:2555–2567

    Article  CAS  Google Scholar 

  25. Villani C, A Glöß, Hättig C, Klopper W (2007) (to be published)

  26. Weigend F (2002). Phys Chem Chem Phys 4:4285–4291

    Article  CAS  Google Scholar 

  27. Weigend F (2006). Phys Chem Chem Phys 8:1057–1065

    Article  CAS  Google Scholar 

  28. Weigend F, Ahlrichs R (2005). Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  29. Weigend F, Häser M (1997). Theor Chem Acc 97:331–340

    CAS  Google Scholar 

  30. Weigend F, Häser M, Patzelt H, Ahlrichs R (1998). Chem Phys Lett 294:143–152

    Article  CAS  Google Scholar 

  31. Weigend F, Köhn A, Hättig C (2002). J Chem Phys 116:3175–3183

    Article  CAS  Google Scholar 

  32. Whitten JL (1973). J Chem Phys 58:4496–4501

    Article  CAS  Google Scholar 

  33. Wilson AK, Woon DE, Peterson KA, Dunning TH (1999). J Chem Phys 110:7667–7676

    Article  CAS  Google Scholar 

  34. Woon DE, Dunning TH (1993). J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnim Hellweg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellweg, A., Hättig, C., Höfener, S. et al. Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theor Chem Acc 117, 587–597 (2007). https://doi.org/10.1007/s00214-007-0250-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0250-5

Keywords

Navigation