Skip to main content
Log in

Multipole electrostatic model for MNDO-like techniques with minimal valence spd-basis sets

  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

An Erratum to this article was published on 10 October 2006

Abstract

We report an implementation of an atomic multipole model (up to quadrupole) for calculating the electrostatic properties of molecules based on electron densities derived from MNDO-like NDDO-based semiempirical MO calculations with minimal s,p,d valence basis sets. The results were validated by a comparison of the calculated values of the molecular electrostatic potential with those obtained from fine grain numerical integrations (both with AM1*), B3LYP/6–31G(d) and MP2/6–31G(d). The DFT and ab initio potentials can be reproduced remarkably well (mean unsigned error <2 kcal mol−1 e−1) using simple linear regression equations to correct the AM1* (multipole) results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stone AJ (2002) The theory of intermolecular forces, chapter 2. Clarendon Press, Oxford, p 12

  2. Politzer P, Murray JS (1998) Molecular electrostatic potentials and chemical reactivity. In: Lipkowitz K, Boyd RB (eds), Rev Comput Chem, vol 2. VCH, New York pp 273–312

  3. Murray JS, Politzer P (2003) The use of the molecular electrostatic potential in medicin chemistry. In: Carloni P, Alber F, Mannhold R, Kubinyi H, Folkers G (eds), Quantum medicinal chemistry, vol 17. Wiley-VCH, New York pp 233–254

  4. Ehresmann B, de Groot MJ, Alex A, Clark T (2004) J Chem Inf Comput Sci 43:658–668

    Google Scholar 

  5. Podlipnik Č, Koller J (1998) Croat Chem Acta 71:689–696

    Google Scholar 

  6. Reynolds CA, Richards WG, Goodford PJ (1988) J Chem Soc Perkin Trans II, pp 551–556

  7. Miertus S, Scrocco E, Tomasi J (1981) J Chem Soc Perkin Trans pp 1439–1443

  8. Wong MW, Frisch MJ, Wiberg KB (1991) J Am Chem Soc 113:4776–4782

    Google Scholar 

  9. Rauhut G, Clark T, Steinke T (1993) J Am Chem Soc 115:9174–9181

    Google Scholar 

  10. Zou J, Yu Y, Shang Z (2001) J Chem Soc Perkin Trans pp 1439–1443

  11. Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899–4907

    Google Scholar 

  12. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909

    Google Scholar 

  13. Stewart JJP (1989) J Comput Chem 10:209–220

    Google Scholar 

  14. Beck B, Horn A, Carpenter J, Clark T (1998) J Chem Inf Comput Sci 38:1214–1217

    Google Scholar 

  15. Rein R (1973) Adv Quantum Chem 7:335–396

    Google Scholar 

  16. Merz KM, Besler BH (1990) QCPE Bull 10:15

  17. Reynolds CA, Ferenczy GG, Richards WG (1992) J Mol Struct (Theochem) 256:249–269

    Google Scholar 

  18. Parr RG (1960) J Chem Phys 33:1184–1199

    Google Scholar 

  19. Ford GP, Wang B (1993) Ab Initio hf/6-31g* results. J Comput Chem 14:1101–1111

    Google Scholar 

  20. Bakowies D, Thiel W (1996) J Comput Chem 17:87–108

    Google Scholar 

  21. Dewar MJS, Thiel W (1977) Theor Chim Acta 46:89–104

    Google Scholar 

  22. Rauhut G, Clark T (1993) J Comput Chem 14:503–509

    Google Scholar 

  23. Beck B, Rauhut G, Clark T (1994) J Comput Chem 15:1064–1073

    Google Scholar 

  24. Göller AH, Horn AHC, Clark T (unpublished)

  25. Horn AHC (2004) PhD Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg

  26. Löwdin PO (1995) Phys Rev 97:1474–1489 DOI 10.1103 Phys Rev 971490

    Google Scholar 

  27. Gedeck P, Schindler T, Alex A, Clark T (2000) J Mol Model 6:452–466

    Google Scholar 

  28. Thiel W, Voityuk AA (1992) Theor Chim Acta 81:391–404

    Google Scholar 

  29. Thiel W, Voityuk AA (1996) Theor Chim Acta 93:315

    Google Scholar 

  30. Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw-Hill, New York

  31. Roothaan CCJ (1951) J Chem Phys 19:1445–1458

    Google Scholar 

  32. Pople JA, Santry DP (1965) J Chem Phys 43:S129–S135

    Google Scholar 

  33. Klopman G (1964) J Am Chem Soc 86:4550–4557

    Google Scholar 

  34. Stone AJ (2002) The theory of intermolecular forces, chapter 2. Clarendon Press, Oxford pp 12–18

  35. Stone AJ (2002) The theory of intermolecular forces, chapter 3. Clarendon Press, Oxford pp 36–38

  36. Clark T, Alex A, Beck B, Burkhardt F, Chandrasekhar J, Gedeck P, Horn AHC, Hutter M, Martin B, Rauhut G, Sauer W, Schindler T, Steinke T (2004) Vamp 8.1. Erlangen

  37. Winget P, Horn AHC, Selçuki C, Martin B, Clark T (2003) J Mol Model 9:408–414

    Google Scholar 

  38. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Google Scholar 

  39. Becke AD (1996) J Chem Phys 104:1040–1046

    Google Scholar 

  40. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Google Scholar 

  41. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506

    Google Scholar 

  42. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275–280

    Google Scholar 

  43. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:281–289

    Google Scholar 

  44. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Google Scholar 

  45. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Google Scholar 

  46. McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648

    Google Scholar 

  47. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Google Scholar 

  48. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Google Scholar 

  49. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Google Scholar 

  50. Extra polarization functions consisted of one unscaled Gaussian with the following Gaussian exponents α for each function type (``shell''): Mo: p function, α p =1; f function, α f =0.072; all prefactors were set to 1.0

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.03. Gaussian, Inc., Pittsburgh

  52. Carbo R, Leyda L, Arnau M (1980) Int J Quant Chem 17:1185–1189

    Google Scholar 

  53. Hodgkin EE, Richards GW (1987) Int J Quant Chem 14:105–110

    Google Scholar 

  54. Winget P, Selçuki C, Horn AHC, Martin B, Clark T (2003) Theor Chem Acc 110:254–266

    Google Scholar 

  55. Beck B, Glenn RC, Clark T (1995) J Mol Model 1:176–187

    Google Scholar 

  56. Beck B, Glenn RC, Clark T (1997) J Comput Chem 18:744–756

    Google Scholar 

  57. Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2, pp 799–805

  58. Andzelm J, Kölmel C, Klamt A (1995) J Chem Phys 103:9312–9320

    Google Scholar 

  59. Klamt A In Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF, III, Schreiner PR, editors, Encyclopedia of Computational Chemistry, volume 1, pages 604–615. Wiley, Chichester, UK, 1998

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Clark.

Additional information

Dedicated to Prof. Karl Jug on the occasion of his 65th birthday

An erratum to this article can be found online at http://dx.doi.org/10.1007/s00214-006-0167-4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horn, A., Lin, JH. & Clark, T. Multipole electrostatic model for MNDO-like techniques with minimal valence spd-basis sets. Theor Chem Acc 114, 159–168 (2005). https://doi.org/10.1007/s00214-005-0657-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0657-9

Keywords

Navigation