Skip to main content
Log in

Quantum chemical modeling of enzyme active sites and reaction mechanisms

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional methods, in particular the B3LYP functional, together with the explosive enhancement of computational power, have in the last 5 years or so made it possible to model enzyme active sites and reaction mechanisms in a quite realistic way. Many mechanistic problems have indeed been addressed and solved. This review gives a brief account of the methods and models used to study enzyme active sites and their reaction mechanisms using quantum chemical methods. Examples are given from our recent work in this field. Future perspectives of the field are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becke AD (1988). Phys Rev A38:3098

    Article  PubMed  CAS  Google Scholar 

  2. Becke AD (1992). J Chem Phys 96:2155

    Article  CAS  Google Scholar 

  3. Becke AD (1992). J Chem Phys 97:9173

    Article  CAS  Google Scholar 

  4. Becke AD (1993). J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  5. Noodleman L, Lovell T, Han W-G, Li J, Himo F (2004). Chem Rev 104:459

    Article  PubMed  CAS  Google Scholar 

  6. Himo F, Siegbahn PEM (2003). Chem Rev 103:2421

    Article  PubMed  CAS  Google Scholar 

  7. Siegbahn PEM (2003). Quart Rev Biophys 36:91

    Article  CAS  Google Scholar 

  8. Siegbahn PEM, Blomberg MRA (2001). J Phys Chem B 105:9375

    Article  CAS  Google Scholar 

  9. Siegbahn PEM, Blomberg MRA (1999). Ann Rev Phys Chem 50:221

    Article  CAS  Google Scholar 

  10. Lee C, Yang W, Parr RG (1988). Phys Rev B37:785

    Article  CAS  Google Scholar 

  11. Vosko SH, Wilk L, Nusair M (1980). Can J Phys 58:1200

    Article  CAS  Google Scholar 

  12. Guner V, Khuong KS, Leach AG, Lee PS, Bartberger MD, Houk KN (2003). J Phys Chem A 107:11445

    Article  CAS  Google Scholar 

  13. Curtiss LA, Krishnan R, Redfern PC, Pople JA (1997). J Chem Phys 106:1063

    Article  CAS  Google Scholar 

  14. Bauschlicher CW Jr (1995). Chem Phys Lett 246:40

    Article  CAS  Google Scholar 

  15. Velichkova P, Himo F (2005). J Phys Chem B 109:8216

    Article  CAS  Google Scholar 

  16. Takata Y, Huang Y, Komoto J, Yamada T, Konishi K, Ogawa H, Gomi T, Fujioka M, Takusagawa F (2003). Biochemistry 42:8394

    Article  PubMed  CAS  Google Scholar 

  17. Rinaldo-Matthis A, Rampazzo C, Reichard P, Bianchi V, Nordlund P (2002). Nat Struct Biol 9:779

    Article  PubMed  CAS  Google Scholar 

  18. Cameron AD, Ridderström M, Olin B, Kavarana MJ, Creighton DJ, Mannervik B (1999). Biochemistry 38:13480

    Article  PubMed  CAS  Google Scholar 

  19. Himo F, Siegbahn PEM (2001). J Am Chem Soc 123:10280

    Article  PubMed  CAS  Google Scholar 

  20. Feierberg I, Cameron AD, Åqvist J (1999). FEBS lett 453:90

    Article  PubMed  CAS  Google Scholar 

  21. Arand M, Hallberg BM, Zou J, Bergfors T, Oesch F, van der Werf M, de Bont JAM, Jones TA, Mowbray SL (2003). EMBO J 22:2583

    Article  PubMed  CAS  Google Scholar 

  22. Hopmann KH, Hallberg BM, Himo F (2005) J Am Chem Soc (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahmi Himo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Himo, F. Quantum chemical modeling of enzyme active sites and reaction mechanisms. Theor Chem Acc 116, 232–240 (2006). https://doi.org/10.1007/s00214-005-0012-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0012-1

Keywords

Navigation