Skip to main content
Log in

The effects of synthetic cannabinoids on executive function

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background and aims

There is a growing use of novel psychoactive substances (NPSs) including synthetic cannabinoids. Synthetic cannabinoid products have effects similar to those of natural cannabis but the new synthetic cannabinoids are more potent and dangerous and their use has resulted in various adverse effects. The purpose of the study was to assess whether persistent use of synthetic cannabinoids is associating with impairments of executive function in chronic users.

Methods

A total of 38 synthetic cannabinoids users, 43 recreational cannabis users, and 41 non-user subjects were studied in two centers in Hungary and Israel. Computerized cognitive function tests, the classical Stroop word-color task, n-back task, and a free-recall memory task were used.

Results

Synthetic cannabinoid users performed significantly worse than both recreational and non-cannabis users on the n-back task (less accuracy), the Stroop task (overall slow responses and less accuracy), and the long-term memory task (less word recall). Additionally, they have also shown higher ratings of depression and anxiety compared with both recreational and non-users groups.

Discussion

This study showed impairment of executive function in synthetic cannabinoid users compared with recreational users of cannabis and non-users. This may have major implications for our understanding of the long-term consequences of synthetic cannabinoid based drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aharonovich E, Brooks AC, Nunes EV, Hasin DS (2008) Cognitive deficits in marijuana users: effects on motivational enhancement therapy plus cognitive behavioral therapy treatment outcome. Drug Alcohol Depend 95(3):279–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Akirav I (2011) The role of cannabinoids in modulating emotional and non-emotional memory processes in the hippocampus. Front Behav Neurosci 5(34):34–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arguello PA, Jentsch JD (2004) Cannabinoid CB1 receptor-mediated impairment of visuospatial attention in the rat. Psychopharmacology 177(1):141–150

    Article  CAS  PubMed  Google Scholar 

  • Basavarajappa BS, Subbanna S (2014) CB1 receptor-mediated signaling underlies the hippocampal synaptic, learning, and memory deficits following treatment with JWH-081, a new component of spice/K2 preparations. Hippocampus 24(2):178–88

  • Bates ME, Pawlak AP, Tonigan JS, Buckman JF (2006) Cognitive impairment influences drinking outcome by altering therapeutic mechanisms of change. Psychol Addict Behav 20(3):241

    Article  PubMed  PubMed Central  Google Scholar 

  • Beck AT, Ward C, Mendelson M (1961) Beck depression inventory (BDI). Arch Gen Psychiatry 4(6):561–571

    Article  CAS  PubMed  Google Scholar 

  • Beck AT, Steer RA, Garbin MG (1988) Psychometric properties of the Beck depression inventory: twenty-five years of evaluation. Clin Psychol Rev 8(1):77–100

    Article  Google Scholar 

  • Block RI, O’Leary DS, Hichwa RD, Augustinack JC, Ponto LLB, Ghoneim MM, Hall JA (2002) Effects of frequent marijuana use on memory-related regional cerebral blood flow. Pharmacol Biochem Behav 72(1):237–250

    Article  CAS  PubMed  Google Scholar 

  • Bossong GM, Jager G, Bhattacharyya S, Allen P (2014) Acute and non-acute effects of cannabis on human memory function: a critical review of neuroimaging studies. Curr Pharm Des 20(13):2114–2125

    Article  CAS  PubMed  Google Scholar 

  • Budney AJ, Hughes JR, Moore BA, Vandrey R (2004) Review of the validity and significance of cannabis withdrawal syndrome. Am J Psychiatry 161(11):1967–1977

    Article  PubMed  Google Scholar 

  • Buschke H (1973) Selective reminding for analysis of memory and learning. J Verbal Learn Verbal Behav 12(5):543–550

    Article  Google Scholar 

  • Castaneto MS, Gorelick DA, Desrosiers NA, Hartman RL, Pirard S, Huestis MA (2014) Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend 144:12–41

    Article  CAS  PubMed  Google Scholar 

  • Castellanos D, Thornton G (2012) Synthetic cannabinoid use: recognition and management. J Psychiatr Pract 18(2):86–93

    Article  PubMed  Google Scholar 

  • Castellanos D, Singh S, Thornton G, Avila M, Moreno A (2011) Synthetic cannabinoid use: a case series of adolescents. J Adolesc Health 49(4):347–349

    Article  PubMed  Google Scholar 

  • Colom R, Román FJ, Abad FJ, Shih PC, Privado J, Froufe M et al (2013) Adaptive n-back training does not improve fluid intelligence at the construct level: gains on individual tests suggest that training may enhance visuospatial processing. Intelligence 41(5):712–727

    Article  Google Scholar 

  • Crean RD, Crane NA, Mason BJ (2011) An evidence based review of acute and long-term effects of cannabis use on executive cognitive functions. Journal of Addiction Medicine 5(1):1–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Curran VH, Brignell C, Fletcher S, Middleton P, Henry J (2002) Cognitive and subjective dose-response effects of acute oral Δ9-tetrahydrocannabinol (THC) in infrequent cannabis users. Psychopharmacology 164(1):61–70

    Article  CAS  PubMed  Google Scholar 

  • Diamond A (2013) Executive functions. Annu Rev Psychol 64:135–168

    Article  PubMed  Google Scholar 

  • Egerton A, Allison C, Brett RR, Pratt JA (2006) Cannabinoids and prefrontal cortical function: insights from preclinical studies. Neurosci Biobehav Rev 30(5):680–695

    Article  CAS  PubMed  Google Scholar 

  • Eldreth DA, Matochik JA, Cadet JL, Bolla KI (2004) Abnormal brain activity in prefrontal brain regions in abstinent marijuana users. NeuroImage 23(3):914–920

    Article  PubMed  Google Scholar 

  • Fattore L, Fratta W (2011) Beyond THC: the new generation of cannabinoid designer drugs. Front Behav Neurosci 5(60):1–12

    Google Scholar 

  • Filbey FM, McQueeny T, Kadamangudi S, Bice C, Ketcherside A (2015) Combined effects of marijuana and nicotine on memory performance and hippocampal volume. Behav Brain Res 293:46–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman NP, Miyake A, Corley RP, Young SE, DeFries JC, Hewitt JK (2006) Not all executive functions are related to intelligence. Psychol Sci 17(2):172–179

    Article  PubMed  Google Scholar 

  • Funahashi S (2001) Neuronal mechanisms of executive control by the prefrontal cortex. Neurosci Res 39(2):147–165

    Article  CAS  PubMed  Google Scholar 

  • Ghitza UE, Epstein DH, Schmittner J, Vahabzadeh M, Lin JL, Preston KL (2007) Randomized trial of prize-based reinforcement density for simultaneous abstinence from cocaine and heroin. J Consult Clin Psychol 75(5):765–744

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldman-Rakic PS (1995) Architecture of the prefrontal cortex and the central executive. Ann N Y Acad Sci 769:71–83

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk C, Beauvais J, Hart R, Kosten T (2001) Cognitive function and cerebral perfusion during cocaine abstinence. Am J Psychiatr 158(4):540–545

    Article  CAS  PubMed  Google Scholar 

  • Hackman DA, Farah MJ (2009) Socioeconomic status and the developing brain. Trends Cogn Sci 13(2):65–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris CR, Brown A (2013) Synthetic cannabinoid intoxication: a case series and review. The Journal of Emergency Medicine 44(2):360–366

    Article  PubMed  Google Scholar 

  • Hatchard T, Fried PA, Hogan MJ, Cameron I, Smith AM (2014) Marijuana use impacts cognitive interference: an fMRI investigation in young adults performing the counting Stroop task. Journal of Addiction Research & Therapy 5(4):197–203

    Article  Google Scholar 

  • Hermanns-Clausen M, Kneisel S, Szabo B, Auwärter V (2013) Acute toxicity due to the confirmed consumption of synthetic cannabinoids: clinical and laboratory findings. Addiction 108(3):534–544

    Article  PubMed  Google Scholar 

  • Hester R, Nestor L, Garavan H (2009) Impaired error awareness and anterior cingulate cortex hypoactivity in chronic cannabis users. Neuropsychopharmacology 34(11):2450–2458

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill MN, Froc DJ, Fox CJ, Gorzalka BB, Christie BR (2004) Prolonged cannabinoid treatment results in spatial working memory deficits and impaired long-term potentiation in the CA1 region of the hippocampus in vivo. Eur J Neurosci 20(3):859–863

    Article  PubMed  Google Scholar 

  • Jaeggi SM, Buschkuehl M, Perrig WJ, Meier B (2010) The concurrent validity of the N-back task as a working memory measure. Memory 18(4):394–412

    Article  PubMed  Google Scholar 

  • Jager G, Kahn RS, Van Den Brink W, Van Ree JM, Ramsey NF (2006) Long-term effects of frequent cannabis use on working memory and attention: an fMRI study. Psychopharmacology 185(3):358–368

    Article  CAS  PubMed  Google Scholar 

  • Jager G, Van Hell HH, De Win MML, Kahn RS, Van Den Brink W, Van Ree JM, Ramsey NF (2007) Effects of frequent cannabis use on hippocampal activity during an associative memory task. Eur Neuropsychopharmacol 17(4):289–297

    Article  CAS  PubMed  Google Scholar 

  • Julian LJ (2011) Measures of anxiety: state-trait anxiety inventory (STAI), Beck anxiety inventory (BAI), and hospital anxiety and depression scale-anxiety (HADS-A). Arthritis Care & Research 63(S11):S467–S472 JOUR

    Article  Google Scholar 

  • Kanayama G, Rogowska J, Pope HG, Gruber SA, Yurgelun-Todd DA (2004) Spatial working memory in heavy cannabis users: a functional magnetic resonance imaging study. Psychopharmacology 176(3):239–247

    Article  CAS  PubMed  Google Scholar 

  • Kopp MS, Skrabski Á, Szedmák S (1995) Socioeconomic factors, severity of depressive symptomatology, and sickness absence rate in the Hungarian population. J Psychosom Res 39(8):1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Lichtman AH, Varvel SA, Martin BR (2002) Endocannabinoids in cognition and dependence. Prostaglandins Leukot Essent Fat Acids 66(2):269–285

    Article  CAS  Google Scholar 

  • Macfarlane V, Christie G (2015) Synthetic cannabinoid withdrawal: a new demand on detoxification services. Drug Alcohol Rev 34(2):147–153

    Article  PubMed  Google Scholar 

  • Maćkowiak M, Chocyk A, Dudys D, Wedzony K (2009) Activation of CB1 cannabinoid receptors impairs memory consolidation and hippocampal polysialylated neural cell adhesion molecule expression in contextual fear conditioning. Neuroscience 158(4):1708–1716

    Article  PubMed  Google Scholar 

  • MacLeod CM (1991) Half a century of research on the Stroop effect: an integrative review. Psychol Bull 109(2):163–203

    Article  CAS  PubMed  Google Scholar 

  • Miller KM, Price CC, Okun MS, Montijo H, Bowers D (2009) Is the n-back task a valid neuropsychological measure for assessing working memory? Arch Clin Neuropsychol 24(7):711–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller RLA, Thakur GA, Stewart WN, Bow JP, Bajaj S, Makriyannis A, McLaughlin PJ (2013) Effects of a novel CB1 agonist on visual attention in male rats: role of strategy and expectancy in task accuracy. Exp Clin Psychopharmacol 21(5):416–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misner DL, Sullivan JM (1999) Mechanism of cannabinoid effects on long-term potentiation and depression in hippocampal CA1 neurons. J Neurosci 19(16):6795–6805

    CAS  PubMed  Google Scholar 

  • Nacca N, Vatti D, Sullivan R, Sud P, Su M, Marraffa J (2013) The synthetic cannabinoid withdrawal syndrome. Journal of Addiction Medicine 7(4):296–298

    Article  CAS  PubMed  Google Scholar 

  • Nava F, Carta G, Battasi AM, Gessa GL (2000) D2 dopamine receptors enable Δ9-tetrahydrocannabinol induced memory impairment and reduction of hippocampal extracellular acetylcholine concentration. Br J Pharmacol 130(6):1201–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oluwabusi OO, Lobach L, Akhtar U, Youngman B, Ambrosini PJ (2012) Synthetic cannabinoid-induced psychosis: two adolescent cases. Journal of Child and Adolescent Psychopharmacology 22(5):393–395

    Article  PubMed  Google Scholar 

  • Pattij T, Wiskerke J, Schoffelmeer ANM (2008) Cannabinoid modulation of executive functions. Eur J Pharmacol 585(2):458–463

    Article  CAS  PubMed  Google Scholar 

  • Pistis M, Ferraro L, Pira L, Flore G, Tanganelli S, Gessa GL, Devoto P (2002) Δ 9-tetrahydrocannabinol decreases extracellular GABA and increases extracellular glutamate and dopamine levels in the rat prefrontal cortex: an in vivo microdialysis study. Brain Res 948(1):155–158

    Article  CAS  PubMed  Google Scholar 

  • Renard J, Krebs MO, Le Pen G, & Jay, TM (2014) Long-term consequences of adolescent cannabinoid exposure in adult psychopathology. Frontiers in Neuroscience 8:361. doi:10.3389/fnins.2014.00361

  • Reyes BAS, Rosario JC, Piana PMT, Van Bockstaele EJ (2009) Cannabinoid modulation of cortical adrenergic receptors and transporters. J Neurosci Res 87(16):3671–3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins TW, Arnsten AFT (2009) The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci 32:267–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson L, Goonawardena AV, Pertwee RG, Hampson RE, Riedel G (2007) The synthetic cannabinoid HU210 induces spatial memory deficits and suppresses hippocampal firing rate in rats. Br J Pharmacol 151(5):688–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbaum M, Najenson T (1976) Changes in life patterns and symptoms of low mood as reported by wives of severely brain-injured soldiers. J Consult Clin Psychol 44(6):861–881

    Article  Google Scholar 

  • Seely KA, Lapoint J, Moran JH, Fattore L (2012) Spice drugs are more than harmless herbal blends: a review of the pharmacology and toxicology of synthetic cannabinoids. Prog Neuro-Psychopharmacol Biol Psychiatry 39(2):234–243

    Article  CAS  Google Scholar 

  • Sipos K, Sipos M (1983) The development and validation of the Hungarian form of the state-trait anxiety inventory. Series in Clinical & Community Psychology: Stress & Anxiety 2:27–39

    Google Scholar 

  • Smith AM, Longo CA, Fried PA, Hogan MJ, Cameron I (2010) Effects of marijuana on visuospatial working memory: an fMRI study in young adults. Psychopharmacology 210(3):429–438

    Article  CAS  PubMed  Google Scholar 

  • Soussan C, Kjellgren A (2014) The flip side of “spice”: the adverse effects of synthetic cannabinoids as discussed on a Swedish Internet forum. Nordic Stud Alcohol Drugs 31(2):207–220

    Article  Google Scholar 

  • Spaderna M, Addy PH, D’Souza DC (2013) Spicing things up: synthetic cannabinoids. Psychopharmacology 228(4):525–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spielberger CD, Gorsuch RL, Lushene R, Vagg PR, Jacobs GA (1983) Manual for the state-trait anxiety inventory. Manual for the state-trait anxiety inventory. Consulting Psychologists Press, Palo Alto

    Google Scholar 

  • Török S, Kökönyei G, Károlyi L, Ittzés A, Tomcsányi T (2006) Outcome effectiveness of therapeutic recreation camping program for adolescents living with cancer and diabetes. J Adolesc Health 39(3):445–447

    Article  PubMed  Google Scholar 

  • Van der Stelt M, Di Marzo V (2003) The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders. Eur J Pharmacol 480(1):133–150

    Article  CAS  PubMed  Google Scholar 

  • Vandrey R, Dunn KE, Fry JA, Girling ER (2012) A survey study to characterize use of spice products (synthetic cannabinoids). Drug Alcohol Depend 120(1):238–241

    Article  CAS  PubMed  Google Scholar 

  • Winstock AR, Barratt MJ (2013) Synthetic cannabis: a comparison of patterns of use and effect profile with natural cannabis in a large global sample. Drug Alcohol Depend 131(1):106–111

    Article  CAS  PubMed  Google Scholar 

  • Yeakel JK, Logan BK (2013) Blood synthetic cannabinoid concentrations in cases of suspected impaired driving. J Anal Toxicol 37(8):547–551

    Article  CAS  PubMed  Google Scholar 

  • Zawilska JB (2011) Legal highs: new players in the old drama. Current Drug Abuse Reviews 4(2):122–130

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann US, Winkelmann PR, Pilhatsch M, Nees JA, Spanagel R, Schulz K (2009) Withdrawal phenomena and dependence syndrome after the consumption of “spice gold”. Dtsch Arztebl Int 106(27):464–467

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was partly funded by a grant from the National Institute for Psychobiology in Israel to Prof. Weinstein. The study was published as an M.A. thesis for Koby Cohen. We would like to thank the managers of the treatment centers of the Ministry of Health in Israel (Ashdod, Lifta, Haderech, Tamra, and Malcishua) and in Hungary for allowing access to patients. The study was presented at the fourth meeting on Novel Psychoactive Substances in Budapest 31 March 2016 and the 78th meeting of the College on Problems of Drug Dependence in Palms Springs CA USA in 11–16 June 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Weinstein.

Appendix

Appendix

List of synthetic cannabinoids that were detected in Israel and Hungary 5F-AMB, THJ-2201, AM-2201, MAM-2201, FUBINACA, AB-FUBINACA, 5F-SDB-006, PB 22, 5FPB-22, FDU-PB-22, FUB-PB-22, 5F-ADBICA, AB-PINACA, AB-CHMINACA, AKB-48, 5F–AKB-48, XLR-11, UR-144, JWH018, JWH-081, JWH073, JWH200, JWH-210, AB-001, DMT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, K., Kapitány-Fövény, M., Mama, Y. et al. The effects of synthetic cannabinoids on executive function. Psychopharmacology 234, 1121–1134 (2017). https://doi.org/10.1007/s00213-017-4546-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4546-4

Keywords

Navigation