Skip to main content

Advertisement

Log in

Hispidulin alleviated methamphetamine-induced hyperlocomotion by acting at α6 subunit-containing GABAA receptors in the cerebellum

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Hispidulin is a flavonoid we isolated from Clerodendrum inerme, an herb that effectively remitted a case of intractable motor tic disorders. Hispidulin was shown to be a positive allosteric modulator (PAM) of GABAA receptors, including the α6 subunit-containing subtype (α6GABAAR) that is predominantly expressed in cerebellar granule cells and insensitive to diazepam.

Objectives

We explored the action mechanism(s) of hispidulin using hyperdopaminergic mouse models induced by methamphetamine and apomorphine, based on the hyperdopaminergic nature of tic disorders.

Results

Hispidulin significantly inhibited methamphetamine-induced hyperlocomotion (MIH) at i.p. doses without affecting apomorphine-induced hyperlocomotion and stereotypy behaviors or having significant benzodiazepine-like effects (BZLE), including sedation, anxiety, and motor impairment. When given by intracerebellar (i.c.b.) microinjection, hispidulin also alleviated MIH and this effect was prevented by i.c.b. coadministration of furosemide, an α6GABAAR antagonist, and mimicked by i.c.b. Ro 15-4513, an α6GABAAR PAM. Conversely, i.c.b. diazepam did not affect MIH while it reduced MIH at i.p. doses having significant BZLE. In a screening assay for 92 neurotransmitter receptors/degradation enzymes/transporters, hispidulin displayed significant (>50 % inhibition of radiolabeled ligand binding at 10 μM) binding affinity only at the benzodiazepine binding site of GABAARs (IC50 0.73∼1.78 μM) and catecholamine-o-methyl-transferase (COMT) (IC50 1.32 μM). OR-486, a more potent COMT inhibitor than hispidulin, did not affect MIH.

Conclusions

It is suggested that hispidulin alleviates MIH via acting as a PAM of cerebellar α6GABAARs, but not through COMT inhibition or affecting dopamine receptor responsiveness. Thus, selective α6GABAAR PAMs may have the potential to be a novel treatment for hyperdopaminergic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

α6GABAARs:

α6 Subunit-containing GABAA receptors

AIH:

Apomorphine-induced hyperlocomotion

AIS:

Apomorphine-induced stereotypy behaviors

CI :

Clerodendrum inerme

COMT:

Catechol-O-methyltransferase

MIH:

Methamphetamine-induced hyperlocomotion

PAM:

Positive allosteric modulator

TS:

Tourette syndrome

References

  • Bolam JP, Hanley JJ, Booth PA, Bevan MD (2000) Synaptic organisation of the basal ganglia. J Anat 196(Pt 4):527–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bronfeld M, Israelashvili M, Bar-Gad I (2013) Pharmacological animal models of Tourette syndrome. Neurosci Biobehav Rev 37:1101–1119

    Article  CAS  PubMed  Google Scholar 

  • Chen HL, Lee HJ, Huang WJ, Chou JF, Fan PC, Du JC, Ku YL, Chiou LC (2012) Clerodendrum inerme Leaf Extract Alleviates Animal Behaviors, Hyperlocomotion, and Prepulse Inhibition Disruptions, Mimicking Tourette Syndrome and Schizophrenia. Evid Based Complement Alternat Med 2012:284301

    PubMed  PubMed Central  Google Scholar 

  • Cheon KA, Ryu YH, Namkoong K, Kim CH, Kim JJ, Lee JD (2004) Dopamine transporter density of the basal ganglia assessed with [123I]IPT SPECT in drug-naive children with Tourette’s disorder. Psychiatry Res 130:85–95

    Article  CAS  PubMed  Google Scholar 

  • Cohen DJ, Shaywitz BA, Caparulo B, Young JG, Bowers MB Jr (1978) Chronic, multiple tics of Gilles de la Tourette’s disease. CSF acid monoamine metabolites after probenecid administration. Arch Gen Psychiatry 35:245–250

    Article  CAS  PubMed  Google Scholar 

  • Delis F, Mitsacos A, Giompres P (2004) Dopamine receptor and transporter levels are altered in the brain of Purkinje Cell Degeneration mutant mice. Neuroscience 125:255–268

    Article  CAS  PubMed  Google Scholar 

  • Delis F, Mitsacos A, Giompres P (2013) Lesion of the cerebellar paravermis increases dopamine D1 receptor levels in the contralateral striatum. J Chem Neuroanat 47:35–41

    Article  CAS  PubMed  Google Scholar 

  • Derry JM, Dunn SM, Davies M (2004) Identification of a residue in the gamma-aminobutyric acid type A receptor alpha subunit that differentially affects diazepam-sensitive and -insensitive benzodiazepine site binding. J Neurochem 88:1431–1438

    Article  CAS  PubMed  Google Scholar 

  • Fan PC, Huang W-J, Chiou L-C (2009) Intractable chronic motor tics dramatically respond to Clerodendrum inerme (L.) Gaertn. J. Child Neurol 24:887–890

    Article  Google Scholar 

  • Godar SC, Mosher LJ, Di Giovanni G, Bortolato M (2014) Animal models of tic disorders: a translational perspective. J Neurosci Methods 238:54–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzales RA, Job MO, Doyon WM (2004) The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol Ther 103:121–146

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez A, Khan ZU, De Blas AL (1996) Immunocytochemical localization of the alpha 6 subunit of the gamma-aminobutyric acidA receptor in the rat nervous system. J Comp Neurol 365:504–510

    Article  CAS  PubMed  Google Scholar 

  • Hadingham KL, Garrett EM, Wafford KA, Bain C, Heavens RP, Sirinathsinghji DJ, Whiting PJ (1996) Cloning of cDNAs encoding the human gamma-aminobutyric acid type A receptor alpha 6 subunit and characterization of the pharmacology of alpha 6-containing receptors. Mol Pharmacol 49:253–259

    CAS  PubMed  Google Scholar 

  • Hamann M, Rossi DJ, Attwell D (2002) Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron 33:625–633

    Article  CAS  PubMed  Google Scholar 

  • Hanrahan JR, Chebib M, Johnston GA (2015) Interactions of flavonoids with ionotropic GABA receptors. Adv Pharmacol 72:189–200

    Article  PubMed  Google Scholar 

  • Horan P, de Costa BR, Rice KC, Porreca F (1991) Differential antagonism of U69,593- and bremazocine-induced antinociception by (-)-UPHIT: evidence of kappa opioid receptor multiplicity in mice. J Pharmacol Exp Ther 257:1154–1161

    CAS  PubMed  Google Scholar 

  • Huang WJ, Lee HJ, Chen HL, Fan PC, Ku YL, Chiou LC (2015) Hispidulin, a constituent of Clerodendrum inerme that remitted motor tics, alleviated methamphetamine-induced hyperlocomotion without motor impairment in mice. J Ethnopharmacol 166:18–22

    Article  CAS  PubMed  Google Scholar 

  • Kaenmaki M, Tammimaki A, Myohanen T, Pakarinen K, Amberg C, Karayiorgou M, Gogos JA, Mannisto PT (2010) Quantitative role of COMT in dopamine clearance in the prefrontal cortex of freely moving mice. J Neurochem 114:1745–1755

    Article  CAS  PubMed  Google Scholar 

  • Kavvadias D, Monschein V, Sand P, Riederer P, Schreier P (2003) Constituents of sage (Salvia officinalis) with in vitro affinity to human brain benzodiazepine receptor. Planta Med 69:113–117

    Article  CAS  PubMed  Google Scholar 

  • Kavvadias D, Sand P, Youdim KA, Qaiser MZ, Rice-Evans C, Baur R, Sigel E, Rausch WD, Riederer P, Schreier P (2004) The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood-brain barrier and exhibits anticonvulsive effects. Br J Pharmacol 142:811–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoflach F, Benke D, Wang Y, Scheurer L, Luddens H, Hamilton BJ, Carter DB, Mohler H, Benson JA (1996) Pharmacological modulation of the diazepam-insensitive recombinant gamma-aminobutyric acidA receptors alpha 4 beta 2 gamma 2 and alpha 6 beta 2 gamma 2. Mol Pharmacol 50:1253–1261

    CAS  PubMed  Google Scholar 

  • Korpi ER, Kuner T, Seeburg PH, Luddens H (1995) Selective antagonist for the cerebellar granule cell-specific gamma-aminobutyric acid type A receptor. Mol Pharmacol 47:283–289

    CAS  PubMed  Google Scholar 

  • Kurlan R, Whitmore D, Irvine C, McDermott MP, Como PG (1994) Tourette’s syndrome in a special education population: a pilot study involving a single school district. Neurology 44:699–702

    Article  CAS  PubMed  Google Scholar 

  • Laurie DJ, Wisden W, Seeburg PH (1992) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci 12:4151–4172

    CAS  PubMed  Google Scholar 

  • Marder M, Viola H, Wasowski C, Fernandez S, Medina JH, Paladini AC (2003) 6-methylapigenin and hesperidin: new valeriana flavonoids with activity on the CNS. Pharmacol Biochem Behav 75:537–545

    Article  CAS  PubMed  Google Scholar 

  • Medina JH, Viola H, Wolfman C, Marder M, Wasowski C, Calvo D, Paladini AC (1997) Overview--flavonoids: a new family of benzodiazepine receptor ligands. Neurochem Res 22:419–425

    Article  CAS  PubMed  Google Scholar 

  • Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425

    Article  CAS  PubMed  Google Scholar 

  • Moufid A, Eddouks M (2012) Artemisia herba alba: a popular plant with potential medicinal properties. Pak J Biol Sci 15:1152–1159

    Article  PubMed  Google Scholar 

  • Neuner I, Werner CJ, Arrubla J, Stocker T, Ehlen C, Wegener HP, Schneider F, Shah NJ (2014) Imaging the where and when of tic generation and resting state networks in adult Tourette patients. Front Hum Neurosci 8:362

    Article  PubMed  PubMed Central  Google Scholar 

  • Nusser Z, Sieghart W, Somogyi P (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 18:1693–1703

    CAS  PubMed  Google Scholar 

  • Park WK, Jeong D, Yun CW, Lee S, Cho H, Kim GD, Koh HY, Pae AN, Cho YS, Choi KI, Jung JY, Jung SH, Kong JY (2003) Pharmacological actions of a novel and selective dopamine D3 receptor antagonist, KCH-1110. Pharmacol Res 48:615–622

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Franklin KB (2001) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

  • Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neurosci 101:815–850

    Article  CAS  Google Scholar 

  • Sacchetti B, Scelfo B, Strata P (2005) The cerebellum: synaptic changes and fear conditioning. Neuroscientist 11:217–227

    Article  PubMed  Google Scholar 

  • Singer HS (2005a) Tourette’s syndrome: from behaviour to biology. Lancet Neurol 4:149–159

    Article  PubMed  Google Scholar 

  • Singer HS (2005b) Tourette’s syndrome: from behaviour to biology. Lancet Neurol 4:149–159

    Article  PubMed  Google Scholar 

  • Singer HS (2006) Discussing outcome in Tourette syndrome. Arch Pediatr Adolesc Med 160:103–105

    Article  PubMed  Google Scholar 

  • Singer HS, Minzer K (2003) Neurobiology of Tourette’s syndrome: concepts of neuroanatomic localization and neurochemical abnormalities. Brain Dev 25(Suppl 1):S70–S84

    Article  PubMed  Google Scholar 

  • Singer HS, Szymanski S, Giuliano J, Yokoi F, Dogan AS, Brasic JR, Zhou Y, Grace AA, Wong DF (2002) Elevated intrasynaptic dopamine release in Tourette’s syndrome measured by PET. Am J Psychiatry 159:1329–1336

    Article  PubMed  Google Scholar 

  • Swaiman KF, Ashwal S, Ferriero DM (2006) Neurobehavioral disorder in Pediatric neurology: Principles & Practice. Mosby, Elsevier, Philadelphia, p 966

    Google Scholar 

  • Tsang SY, Xue H (2004) Development of effective therapeutics targeting the GABAA receptor: naturally occurring alternatives. Curr Pharm Des 10:1035–1044

    Article  CAS  PubMed  Google Scholar 

  • Varagic Z, Ramerstorfer J, Huang S, Rallapalli S, Sarto-Jackson I, Cook J, Sieghart W, Ernst M (2013a) Subtype selectivity of alpha + beta- site ligands of GABAA receptors: identification of the first highly specific positive modulators at alpha6beta2/3gamma2 receptors. Br J Pharmacol 169:384–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varagic Z, Wimmer L, Schnurch M, Mihovilovic MD, Huang S, Rallapalli S, Cook JM, Mirheydari P, Ecker GF, Sieghart W, Ernst M (2013b) Identification of novel positive allosteric modulators and null modulators at the GABAA receptor alpha + beta- interface. Br J Pharmacol 169:371–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varecka L, Wu CH, Rotter A, Frostholm A (1994) GABAA/benzodiazepine receptor alpha 6 subunit mRNA in granule cells of the cerebellar cortex and cochlear nuclei: expression in developing and mutant mice. J Comp Neurol 339:341–352

    Article  CAS  PubMed  Google Scholar 

  • Wise RA (2006) Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond B Biol Sci 361:1149–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Xie H, Wu P, Wei X (2013) Flavonoids from the capitula of Eriocaulon australe. Food Chem 139:149–154

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was mainly supported by the National Research Program for Biopharmaceuticals (NSC 100-2325-B002-050, NSC 101-2325-B002-048, NSC 102-2325-B002-047, MOST 103-2325-B002-037 and MOST 104-2325-B002-010) and the research grants (MOST 103-2321-B002-035 to LCC; NSC 102-2320-B038-019-MY3 to WJH) from the National Science Council (the Ministry of Science and Technology), Taiwan, as well as by the Innovative Research Grant from National Health Research Institutes, Taiwan (NHRI-EX104-10251NI to LCC). We thank the support from Behavior Core, Neurobiology and Cognitive Center, National Taiwan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lih-Chu Chiou.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Supplementary Table S1

Radioligand displacement studies conducted over a broad LeadProfiling and Therapeutic area/CNS Screen by Ricerca Biosciences* (study No. AA95970) to determine the binding affinity/inhibitory activity of hispidulin at 92 receptors, channels, transporters and enzymes. (DOC 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, YH., Lee, HJ., Huang, WJ. et al. Hispidulin alleviated methamphetamine-induced hyperlocomotion by acting at α6 subunit-containing GABAA receptors in the cerebellum. Psychopharmacology 233, 3187–3199 (2016). https://doi.org/10.1007/s00213-016-4365-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4365-z

Keywords

Navigation