Skip to main content
Log in

Oral operant ethanol self-administration in the absence of explicit cues, food restriction, water restriction and ethanol fading in C57BL/6J mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Mouse models of ethanol (EtOH) self-administration are useful to identify genetic and biological underpinnings of alcohol use disorder.

Objectives

These experiments developed a novel method of oral operant EtOH self-administration in mice without explicitly paired cues, food/water restriction, or EtOH fading.

Methods

Following magazine and lever training for 0.2 % saccharin (SAC), mice underwent nine weekly overnight sessions with lever pressing maintained by dipper presentation of 0, 3, 10, or 15 % EtOH in SAC or water vehicle. Ad libitum water was available from a bottle.

Results

Water vehicle mice ingested most fluid from the water bottle in contrast to SAC vehicle mice, which despite lever pressing demands, drank most of their fluid from the liquid dipper. Although EtOH in SAC vehicle mice showed concentration-dependent increases of g/kg EtOH intake, lever pressing decreased with increasing EtOH concentration and did not exceed that of SAC vehicle alone at any EtOH concentration. Mice reinforced with EtOH in water ingested less EtOH than mice reinforced with EtOH in SAC. EtOH in water mice, however, showed concentration-dependent increases in g/kg EtOH intake and lever presses. Fifteen percent EtOH in water mice showed significantly greater levels of lever pressing than water vehicle mice and a significant escalation of responding across weeks of exposure. Naltrexone pretreatment reduced EtOH self-administration and intake in these mice without altering responding in the vehicle control condition during the first hour of the session.

Conclusions

SAC facilitated EtOH intake but prevented observation of EtOH reinforcement. Water vehicle unmasked EtOH’s reinforcing effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Augier E, Flanigan M, Dulman RS, et al. (2014) Wistar rats acquire and maintain self-administration of 20 % ethanol without water deprivation, saccharin/sucrose fading, or extended access training. Psychopharmacology 1–8. doi:10.1007/s00213-014-3605-3

  • Baum WM (1993) Performances on ratio and interval schedules of reinforcement: data and theory. J Exp Anal Behav 59:254–264

    Article  Google Scholar 

  • Bell RL, Rodd ZA, Lumeng L et al (2006) The alcohol-preferring P rat and animal models of excessive alcohol drinking. Addict Biol 11:270–288

    Article  PubMed  Google Scholar 

  • Bell RL, Rodd ZA, Schultz JA et al (2008) Effects of short deprivation and re-exposure intervals on the ethanol drinking behavior of selectively bred high alcohol-consuming rats. Alcohol 42:407–416. doi:10.1016/j.alcohol.2008.03.130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blednov YA, Benavidez JM, Black M et al (2014) GABAA receptors containing ρ1 subunits contribute to in vivo effects of ethanol in mice. PLoS One 9, e85525. doi:10.1371/journal.pone.0085525

    Article  PubMed Central  PubMed  Google Scholar 

  • Browne JD, Soko AD, Fletcher PJ (2014) Responding for conditioned reinforcement in C57BL/6J and CD-1 mice, and Sprague-Dawley rats: effects of methylphenidate and amphetamine. Psychopharmacology (Berl)

  • Brunzell DH, Chang JR, Schneider D et al (2006) beta2-subunit-containing nicotinic acetylcholine receptors are involved in nicotine-induced increases in conditioned reinforcement but not progressive ratio responding for food in C57BL/6J mice. Psychopharmacology (Berl) 184:328–338

    Article  CAS  Google Scholar 

  • Caggiula AR, Donny EC, White AR, Chaudhri N, Booth S, Gharib MA, Hoffman A, Perkins KA, Sved AF (2001) Cue dependency of nicotine self-administration and smoking. Pharmacol Biochem Behav 70:515–530. doi:10.1016/S0091-3057(01)00676-1

    Article  CAS  PubMed  Google Scholar 

  • Cannady R, Fisher KR, Durant B et al (2013) Enhanced AMPA receptor activity increases operant alcohol self-administration and cue-induced reinstatement. Addict Biol 18:54–65. doi:10.1111/adb.12000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cason AM, Aston-Jones G (2013) Attenuation of saccharin-seeking in rats by orexin/hypocretin receptor 1 antagonist. Psychopharmacology (Berl) 228:499–507. doi:10.1007/s00213-013-3051-7

    Article  CAS  Google Scholar 

  • Cunningham CL, Fidler TL, Hill KG (2000) Animal models of alcohol’s motivational effects. Alcohol Res Health 24:85–92

    CAS  PubMed  Google Scholar 

  • Dager AD, Anderson BM, Stevens MC et al (2013) Influence of alcohol use and family history of alcoholism on neural response to alcohol cues in college drinkers. Alcohol Clin Exp Res 37:161–171. doi:10.1111/j.1530-0277.2012.01879.x

    Article  Google Scholar 

  • Dager AD, Anderson BM, Rosen R et al (2014) Functional magnetic resonance imaging (fMRI) response to alcohol pictures predicts subsequent transition to heavy drinking in college students. Addiction 109:585–595. doi:10.1111/add.12437

    Article  PubMed Central  PubMed  Google Scholar 

  • Davison C, Corwin G, McGowan T (1976) Alcohol-induced taste aversion in golden hamsters. J Stud Alcohol 37:606–610

    Article  CAS  PubMed  Google Scholar 

  • Doyon WM, Dong Y, Ostroumov A et al (2013) Nicotine decreases ethanol-induced dopamine signaling and increases self-administration via stress hormones. Neuron 79:530–540. doi:10.1016/j.neuron.2013.06.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dudek BC (1982) Ethanol-induced conditioned taste aversions in mice that differ in neural sensitivity to ethanol. J Stud Alcohol 43:126–136

    Article  Google Scholar 

  • Duncan SC, Strycker LA, Duncan TE (2012) Alcohol use of African Americans and whites from ages 9–20: descriptive results form a longitudinal study. J Ethn Subst Abus 11:214–225. doi:10.1080/15332640.2012.701550

    Article  Google Scholar 

  • Elmer GI, Meisch RA, George FR (1986) Oral ethanol reinforced behavior in inbred mice. Pharmacol Biochem Behav 24:1417–1421

    Article  CAS  PubMed  Google Scholar 

  • Ferster CB, Skinner BF (1957) Schedules of reinforcement. Appleton, New York

    Book  Google Scholar 

  • Ford MM (2014) Applications of schedule-induced polydipsia in rodents for the study of an excessive ethanol intake phenotype. Alcohol 48:265–276. doi:10.1016/j.alcohol.2014.01.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garland EL, Franken IH, Howard MO (2012) Cue-elicited heart rate variability and attentional bias predict alcohol relapse following treatment. Psychopharmacology (Berl) 222:17–26. doi:10.1007/s00213-011-2618-4

    Article  CAS  Google Scholar 

  • Gillespie NA, Lubke GH, Gardner CO et al (2012) Two-part random effects growth modeling to identify risks associated with alcohol and cannabis initiation, initial average use and changes in drug consumption in a sample of adult, male twins. Drug Alcohol Depend 123:220–228. doi:10.1016/j.drugalcdep.2011.11.015

    Article  PubMed Central  PubMed  Google Scholar 

  • Gonzales RA, Job MO, Doyon WM (2004) The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol Ther 103:121–146. doi:10.1016/j.pharmthera.2004.06.002

    Article  CAS  PubMed  Google Scholar 

  • Grant KA, Samson HH (1985) Oral self-administration of ethanol in free feeding rats. Alcohol 2:317–321

    Article  CAS  PubMed  Google Scholar 

  • Grant KA, Leng X, Green HL et al (2008) Drinking typography established by scheduled induction predicts chronic heavy drinking in a monkey model of ethanol self-administration. Alcohol Clin Exp Res 32:1824–1838. doi:10.1111/j.1530-0277.2008.00765.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grimm JW, Hope BT, Wise RA, Shaham Y (2001) Incubation of cocaine craving after withdrawal. Nature 412:141–142. doi:10.1038/35084134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hay RA, Jennings JH, Zitzman DL et al (2013) Specific and nonspecific effects of naltrexone on goal-directed and habitual models of alcohol seeking and drinking. Alcohol Clin Exp Res 37:1100–1110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holdstock L, King AC, de Wit H (2000) Subjective and objective responses to ethanol in moderate/heavy and light social drinkers. Alcohol Clin Exp Res 24:789–794

    Article  CAS  PubMed  Google Scholar 

  • Kamdar NK, Miller SA, Syed YM et al (2007) Acute effects of Naltrexone and GBR 12909 on ethanol drinking-in-the-dark in C57BL/6J mice. Psychopharmacology 192:207–217. doi:10.1007/s00213-007-0711-5

    Article  CAS  PubMed  Google Scholar 

  • Kelley BM, Middaugh LD (1996) Ethanol self-administration and motor deficits in adults C57BL/6J mice exposed prenatally to cocaine. Pharmacol Biochem Behav 55:575–584

  • Khisti RT, Wolstenholme J, Shelton KL, Miles MF (2006) Characterization of the ethanol-deprivation effect in substrains of C57BL/6 mice. Alcohol 40:119–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kidorf M, Lang AR, Pelham WE (1990) Beverage preference, beverage type and subject gender as determinants of alcohol consumption in the laboratory. J Stud Alcohol 51:331–335

    Article  CAS  PubMed  Google Scholar 

  • King AC, Byars JA (2004) Alcohol-induced performance impairment in heavy episodic and light social drinkers. J Stud Alcohol 65:27–36

    Article  PubMed  Google Scholar 

  • King AC, Houle T, de Wit H et al (2002) Biphasic alcohol response differs in heavy versus light drinkers. Alcohol Clin Exp Res 26:827–835

    Article  CAS  PubMed  Google Scholar 

  • King AC, de Wit H, McNamara PJ, Cao D (2011) Rewarding, stimulant, and sedative alcohol responses and relationship to future binge drinking. Arch Gen Psychiatry 68:389–399. doi:10.1001/archgenpsychiatry.2011.26

    Article  PubMed  Google Scholar 

  • King AC, McNamara PJ, Hasin DS, Cao D (2014) Alcohol challenge responses predict future alcohol use disorder symptoms: a 6-year prospective study. Biol Psychiatry 75:798–806. doi:10.1016/j.biopsych.2013.08.001

    Article  PubMed Central  PubMed  Google Scholar 

  • King AC, Hasin D, O’Connor SJ, McNamara PJ, Cao D (2015) A prospective 5-year re-examination of alcohol response in heavy drinkers progressing in alcohol use disorder. Biol Psychiatry. doi:10.1016/j.biopsych.2015.05.007

    Google Scholar 

  • McBride WJ, Li TK (1998) Animal models of alcoholism: neurobiology of high alcohol-drinking behavior in rodents. Crit Rev Neurobiol 12:339–369

    Article  CAS  PubMed  Google Scholar 

  • McKee SA, Harrison EL, O’Malley SS et al (2009) Varenicline reduces alcohol self-administration in heavy-drinking smokers. Biol Psychiatry 66:185–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Messier C, White NM (1984) Contingent and non-contingent actions of sucrose and saccharin reinforcers: effects on taste preference and memory. Physiol Behav 32:195–203

    Article  CAS  PubMed  Google Scholar 

  • Middaugh LD, Kelley BM (1999) Operant ethanol reward in C57BL/6 mice: influence of gender and procedural variables. Alcohol 17:185–194

  • Middaugh LD, Kelley BM, Bandy AL, McGroarty KK (1999a) Ethanol consumption by C57BL/6 mice: influence of gender and procedural variables. Alcohol 17:175–183

    Article  CAS  PubMed  Google Scholar 

  • Middaugh LD, Kelley BM, Cuison ER, Groseclose CH (1999b) Naltrexone effects on ethanol reward and discrimination in C57BL/6 mice. Alcohol Clin Exp Res 23:456–464

    Article  CAS  PubMed  Google Scholar 

  • Middaugh LD, Lee AM, Bandy AL (2000) Ethanol reinforcement in nondeprived mice: effect of abstinence and naltrexone. Alcohol Clin Exp Res 24:1172–1179

    Article  CAS  PubMed  Google Scholar 

  • Navarrete F, Rubio G, Manzanares J (2013) Effects of naltrexone plus topiramate on ethanol self-administration and tyrosine hydroxylase gene expression changes. Addict Biol. doi:10.1111/adb.12058

    Google Scholar 

  • O’Connor RM, Colder CR (2009) Influence of alcohol use experience and motivational drive on college students’ alcohol-related cognition. Alcohol Clin Exp Res 33:1430–1439. doi:10.1111/j.1530-0277.2009.00973.x

    Article  PubMed  Google Scholar 

  • O’Malley SS, Rounsaville BJ, Farren C et al (2003) Initial and maintenance naltrexone treatment for alcohol dependence using primary care vs specialty care: a nested sequence of 3 randomized trials. Arch Intern Med 163:1695–1704

    Article  PubMed  Google Scholar 

  • O’Malley SS, Garbutt JC, Gastfriend DR et al (2007) Efficacy of extended-release naltrexone in alcohol-dependent patients who are abstinent before treatment. J Clin Psychopharmacol 27:507–512

    Article  PubMed  Google Scholar 

  • Olsen CM, Winder DG (2009) Operant sensation seeking engages similar neural substrates to operant drug seeking in C57 mice. Neuropsychopharmacology 34:1685–1694. doi:10.1038/npp.2008.226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olsen CM, Winder DG (2012) Stimulus dynamics increase the self-administration of compound visual and auditory stimuli. Neurosci Lett 511:8–11. doi:10.1016/j.neulet.2011.12.068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petit G, Kornreich C, Verbanck P, Campanella S (2013) Gender differences in reactivity to alcohol cues in binge drinkers: a preliminary assessment of event-related potentials. Psychiatry Res 209:494–503. doi:10.1016/j.psychres.2013.04.005

    Article  PubMed  Google Scholar 

  • Phillips TJ, Wenger CD, Dorow JD (1997) Naltrexone effects on ethanol drinking acquisition and on established ethanol consumption in C57BL/6J mice. Alcohol Clin Exp Res 21:691–702

    Article  CAS  PubMed  Google Scholar 

  • Prescott CA, Kendler KS (1999) Genetic and environmental contributions to alcohol abuse and dependence in a population-based sample of male twins. Am J Psychiatry 156:34–40

    Article  CAS  PubMed  Google Scholar 

  • Regier PS, Carroll ME, Meisel RL (2012) Cocaine-induced c-Fos expression in rats selectively bred for high or low saccharin intake and in rats selected for high or low impulsivity. Behav Brain Res 233:271–279. doi:10.1016/j.bbr.2012.05.021

    Article  CAS  PubMed  Google Scholar 

  • Rhodes JS, Crabbe JC (2003) Progress towards finding genes for alcoholism in mice. Clin Neurosci Res 3:315–323. doi:10.1016/j.cnr.2003.10.012

    Article  CAS  Google Scholar 

  • Rhodes JS, Best K, Belknap JK et al (2005) Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice. Physiol Behav 84:53–63. doi:10.1016/j.physbeh.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  • Risinger FO, Brown MM, Doan AM, Oakes RA (1998) Mouse strain differences in oral operant ethanol reinforcement under continuous access conditions. Alcohol Clin Exp Res 22:677–684

    Article  CAS  PubMed  Google Scholar 

  • Rodd ZA, Bell RL, Kuc KA et al (2002) Effects of ethanol exposure on subsequent acquisition and extinction of ethanol self-administration and expression of alcohol-seeking behavior in adult alcohol-preferring (P) rats: II. Adult exposure. Alcohol Clin Exp Res 26:1642–1652

    Article  Google Scholar 

  • Rodd ZA, Bell RL, Kuc KA et al (2003) Effects of repeated alcohol deprivations on operant ethanol self-administration by alcohol-preferring (P) rats. Neuropsychopharmacology 28:1614–1621

    Article  CAS  PubMed  Google Scholar 

  • Ryabinin AE, Galvan-Rosas A, Bachtell RK, Risinger FO (2003) High alcohol/sucrose consumption during dark circadian phase in C57BL/6J mice: involvement of hippocampus, lateral septum and urocortin-positive cells of the Edinger-Westphal nucleus. Psychopharmacology 165:296–305. doi:10.1007/s00213-002-1284-y

    CAS  PubMed  Google Scholar 

  • Samson HH (1986) Initiation of ethanol reinforcement using a sucrose-substitution procedure in food- and water-sated rats. Alcohol Clin Exp Res 10:436–442

    Article  CAS  PubMed  Google Scholar 

  • Samson HH, Pfeffer AO, Tolliver GA (1988) Oral ethanol self-administration in rats: models of alcohol-seeking behavior. Alcohol Clin Exp Res 12:591–598

    Article  CAS  PubMed  Google Scholar 

  • Santos N, Chatterjee S, Henry A et al (2013) The α5 neuronal nicotinic acetylcholine receptor subunits plays an important role in the sedative effects of ethanol but does not modulate consumption in mice. Alcohol Clin Exp Res 37:655–662. doi:10.1111/acer.12009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schuckit MA, Smith TL (1996) An 8-year follow-up of 450 sons of alcoholic and control subjects. Arch Gen Psychiatry 53:202–210

    Article  CAS  PubMed  Google Scholar 

  • Sharko AC, Hodge CW (2008) Differential modulation of ethanol-induced sedation and hypnosis by metabotropic glutamate receptor antagonists in C57BL/6J mice. Alcohol Clin Exp Res 32:67–76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sjoerds Z, van den Brink W, Beekman AT et al (2014) Cue reactivity is associated with duration and severity of alcohol dependence: an fMRI study. PLoS One 9, e84560. doi:10.1371/journal.pone.0084560

    Article  PubMed Central  PubMed  Google Scholar 

  • Spanagel R, Hölter SM (1999) Long-term alcohol self-administration with repeated alcohol deprivation phases: an animal model of alcoholism? Alcohol 34:231–243

    Article  CAS  Google Scholar 

  • Tabakoff B, Hoffman PL (2000) Animal models in alcohol research. Alcohol Res Health 24:77–84

    CAS  PubMed  Google Scholar 

  • Tabakoff B, Hoffman PL (2013) The neurobiology of alcohol consumption and alcoholism: an integrative history. Pharmacol Biochem Behav 113:20–37. doi:10.1016/j.pbb.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  • van Erp AMM, Miczek KA (2007) Increased accumbal dopamine during daily alcohol consumption and subsequent aggressive behavior in rats. Psychopharmacology 191:679–688. doi:10.1007/s00213-006-0637-3

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Raehal KM, Lin ET, Lowery JJ, Kieffer BL, Bilsky EJ, Sadee W (2004) Basal signaling activity of μ opioid receptor in mouse brain: role of narcotic dependence. J Pharmacol Exp Ther 308:512–520. doi:10.1124/jpet.103.054049

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2011) Global status report on alcohol and health

Download references

Acknowledgments

We wish to thank Meredith A. Beck, Jennifer M. Lee, and Galina Slavova-Hernandez for technical assistance. Alexandra M. Stafford and Shawn M. Anderson were supported by NIH training grant T32DA007027 to William L. Dewey. Darlene H. Brunzell was supported in part by NIH P50 AA022537 to Kenneth S. Kendler and NIH R01 DA031289 to Dr. Brunzell. Dr. Shelton was supported in part by NIH R01 DA020553. This work was supported by a Virginia Commonwealth University Alcohol Research Center pilot award to Darlene H. Brunzell, NIH P20AA017828 to M.F. Miles.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darlene H. Brunzell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 55 kb)

Online Resource 2

(PDF 117 kb)

Online Resource 3

(PDF 587 kb)

Online Resource 4

(PDF 837 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stafford, A.M., Anderson, S.M., Shelton, K.L. et al. Oral operant ethanol self-administration in the absence of explicit cues, food restriction, water restriction and ethanol fading in C57BL/6J mice. Psychopharmacology 232, 3783–3795 (2015). https://doi.org/10.1007/s00213-015-4040-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4040-9

Keywords

Navigation