Skip to main content
Log in

Mefloquine and psychotomimetics share neurotransmitter receptor and transporter interactions in vitro

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Mefloquine is used for the prevention and treatment of chloroquine-resistant malaria, but its use is associated with nightmares, hallucinations, and exacerbation of symptoms of post-traumatic stress disorder. We hypothesized that potential mechanisms of action for the adverse psychotropic effects of mefloquine resemble those of other known psychotomimetics.

Objectives

Using in vitro radioligand binding and functional assays, we examined the interaction of (+)- and (−)-mefloquine enantiomers, the non-psychotomimetic anti-malarial agent, chloroquine, and several hallucinogens and psychostimulants with recombinant human neurotransmitter receptors and transporters.

Results

Hallucinogens and mefloquine bound stereoselectively and with relatively high affinity (K i = 0.71–341 nM) to serotonin (5-HT) 2A but not 5-HT1A or 5-HT2C receptors. Mefloquine but not chloroquine was a partial 5-HT2A agonist and a full 5-HT2C agonist, stimulating inositol phosphate accumulation, with similar potency and efficacy as the hallucinogen dimethyltryptamine (DMT). 5-HT receptor antagonists blocked mefloquine’s effects. Mefloquine had low or no affinity for dopamine D1, D2, D3, and D4.4 receptors, or dopamine and norepinephrine transporters. However, mefloquine was a very low potency antagonist at the D3 receptor and mefloquine but not chloroquine or hallucinogens blocked [3H]5-HT uptake by the 5-HT transporter.

Conclusions

Mefloquine, but not chloroquine, shares an in vitro receptor interaction profile with some hallucinogens and this neurochemistry may be relevant to the adverse neuropsychiatric effects associated with mefloquine use by a small percentage of patients. Additionally, evaluating interactions with this panel of receptors and transporters may be useful for characterizing effects of other psychotropic drugs and for avoiding psychotomimetic effects for new pharmacotherapies, including antimalarial quinolines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5

Similar content being viewed by others

References

  • AlKadi HO (2007) Antimalarial drug toxicity: a review. Chemotherapy 53:385–391

    Article  CAS  PubMed  Google Scholar 

  • Amabeoku GJ, Farmer CC (2005) Gamma-aminobutyric acid and mefloquine-induced seizures in mice. Prog Neuropsychopharmacol Biol Psychiatr 29(6):917–921

    Article  CAS  Google Scholar 

  • Caridha D, Yourick D, Cabezas M, Wolf L, Hudson TH, Dow GS (2008) Mefloquine-induced disruption of calcium homeostasis in mammalian cells is similar to that induced by ionomycin. Antimicrob Agents Chemother 52(2):684–693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carroll FI, Blackwell JT (1974) Optical isomers of aryl-2-piperidylmethanol antimalarial agents. Preparation, optical purity, and absolute stereochemistry. J Med Chem 17(2):210–219

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K i) and the concentration of an inhibitor which causes 50 per cent inhibition (I 50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  • Combrinck JM, Mabotha TE, Ncokazi KK, Ambele MA, Taylor D, Smith PJ, Hoppe HC, Egan TJ (2013) Insights into the role of heme in the mechanism of action of antimalarials. ACS Chem Biol 8(1):133–137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cruikshank SJ, Hopperstad M, Younger M, Connors BW, Spray DC, Srinivas M (2004) Potent block of Cx36 and Cx50 gap junction channels by mefloquine. Proc Natl Acad Sci U S A 101(33):12364–12369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dow GS, Milner E, Bathurst I, Bhonsle J, Caridha D, Gardner S, Gerena L, Kozar M, Lanteri C, Mannila A, McCalmont W, Moon J, Read KD, Norval S, Roncal N, Shackleford DM, Sousa J, Steuten J, White KL, Zeng Q, Charman SA (2011) Central nervous system exposure of next generation quinoline methanols is reduced relative to mefloquine after intravenous dosing in mice. Malar J 10:150

    Article  PubMed Central  PubMed  Google Scholar 

  • Dzierszinski F, Coppin A, Mortuaire M, Dewailly E, Slomianny C, Ameisen JC, DeBels F, Tomavo S (2002) Ligands of the peripheral benzodiazepine receptor are potent inhibitors of Plasmodium falciparum and Toxoplasma gondii in vitro. Antimicrob Agents Chemother 46(10):3197–3207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Egan C, Grinde E, Dupre A, Roth BL, Hake M, Teitler M, Herrick-Davis K (2000) Agonist high and low affinity state ratios predict drug intrinsic activity and a revised ternary complex mechanism at serotonin 5-HT2A and 5-HT2C receptors. Synapse 35:144–150

    Article  CAS  PubMed  Google Scholar 

  • Eshleman AJ, Carmolli M, Cumbay M, Martens CR, Neve KA, Janowsky A (1999) Characteristics of drug interactions with recombinant biogenic amine transporters expressed in the same cell type. J Pharmacol Exp Ther 289(2):877–885

    CAS  PubMed  Google Scholar 

  • Eshleman AJ, Wolfrum KM, Hatfield MG, Johnson RA, Murphy KV, Janowsky A (2013) Substituted methcathinones differ in transporter and receptor interactions. Biochem Pharmacol 85(12):1803–1815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gatch MB, Forster MJ, Janowsky A, Eshleman AJ (2011) Abuse liability profile of three substituted tryptamines. J Pharmacol Exp Ther 338(1):280–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gazi L, Bobirnac I, Danzeisen M, Schüpbach E, Langenegger D, Sommer B, Hoyer D, Tricklebank M, Schoeffter P (1999) Receptor density as a factor governing the efficacy of the dopamine D4 receptor ligands, L-745,870 and U-101958 at human recombinant D4.4 receptors expressed in CHO cells. Br J Pharmacol 128(3):613–620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gillespie RJ, Adams DR, Bebbington D, Benwell K, Cliffe IA, Dawson CE, Dourish CT, Fletcher A, Gaur S, Giles PR, Jordan AM, Knight AR, Knutsen LJ, Lawrence A, Lerpiniere J, Misra A, Porter RH, Pratt RM, Shepherd R, Upton R, Ward SE, Weiss SM, Williamson DS (2008) Antagonists of the human adenosine A2A receptor: Part 1. Discovery and synthesis of thieno[3,2-d]pyrimidine-4-methanone derivatives. Bioorg Med Chem Lett 18(9):2916–2919

    Article  CAS  PubMed  Google Scholar 

  • Glimcher PW (2011) Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proc Natl Acad Sci U S A 108(Suppl 3):15647–15654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halberstadt AL, Geyer MA (2011) Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology 61:364–381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haynes RK, Cheu KW, Chan HW, Wong HN, Li KY, Tang MM, Chen MJ, Guo ZF, Guo ZH, Sinniah K, Witte AB, Coghi P, Monti D (2012) Interactions between artemisinins and other antimalarial drugs in relation to the cofactor model—a unifying proposal for drug action. Chem Med Chem 7(12):2204–2226

    Article  CAS  PubMed  Google Scholar 

  • Hood JE, Jenkins JW, Milatovic D, Rongzhu L, Aschner M (2010) Mefloquine induces oxidative stress and neurodegeneration in primary rat cortical neurons. Neurotoxicology 31(5):518–523

    Article  CAS  PubMed  Google Scholar 

  • Iglesias R, Locovei S, Roque A, Alberto AP, Dahl G, Spray DC, Scemes E. (2008) P2X7 receptor-Pannexin1 complex: pharmacology and signaling. Am J Physiol Cell Physiol 295:C752–60

    Google Scholar 

  • Jones R, Kunsman G, Levine B, Smith M, Stahl C (1994) Mefloquine distribution in postmortem cases. Forensic Sci Int 68(1):29–32

    Article  CAS  PubMed  Google Scholar 

  • Kanagarajadurai K, Malini M, Bhattacharya A, Panicker MM, Sowdhamini R (2009) Molecular modeling and docking studies of human 5-hydroxytryptamine 2A (5-HT2A) receptor for the identification of hotspots for ligand binding. Mol Biosyst 5(12):1877–1888

    Article  CAS  PubMed  Google Scholar 

  • Kelly JX, Smilkstein MJ, Brun R, Wittlin S, Cooper RA, Lane KD, Janowsky A, Johnson RA, Dodean RA, Winter R, Hinrichs DJ, Riscoe MK (2009) Discovery of dual function acridones as a new antimalarial chemotype. Nature 459(7244):270–273

    Article  CAS  PubMed  Google Scholar 

  • Kennedy K (2009) Army scales back use of anti-malaria drug. Army Times, March 24:2009

    Google Scholar 

  • Knight AR, Misra A, Quirk K, Benwell K, Revell D, Kennett G, Bickerdike M (2004) Pharmacological characterisation of the agonist radioligand binding site of 5HT(2A), 5HT(2B) and 5HT(2C) receptors. Naunyn-Schmeideberg’s Arch Pharmacol 370:114–123

    CAS  Google Scholar 

  • MacLean D.S. (2013) Crazy Pills. The New York Times. August 7. Available at http://www.nytimes.com/2013/08/08/opinion/crazy-pills.html?_r=0

  • Marona-Lewicka D, Nichols CD, Nichols DE (2011) An animal model of schizophrenia based on chronic LSD administration: old idea, new results. Neuropharmacology 61(3):503–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Milatovic D, Jenkins JW, Hood JE, Yu Y, Rongzhu L, Aschner M (2011) Mefloquine neurotoxicity is mediated by non-receptor tyrosine kinase. Neurotoxicology 32:578–585

    Article  CAS  PubMed  Google Scholar 

  • Minuzzi L, Cumming P (2010) Agonist binding fraction of dopamine D2/3 receptors in rat brain: a quantitative autoradiographic study. Neurochem Int 56(6-7):747–752

    Article  CAS  PubMed  Google Scholar 

  • Miyake N, Miyamoto S, Jarskog LF (2012) New serotonin/dopamine antagonists for the treatment of schizophrenia: are we making real progress? Clin Schizophr Relat Psychoses 6(3):122–133

    Article  PubMed  Google Scholar 

  • Neve KA, Neve RL (1997) Molecular biology of dopamine receptors. In: Neve KA, Neve RL (eds) The dopamine receptors. Humana Press, Totowa

    Chapter  Google Scholar 

  • Nichols DE (2004) Hallucinogens. Pharmacol Ther 101:131–181

  • Nichols DE, Frescas S, Marona-Lewicka D, Kurrasch-Orbaugh DM. (2002) Lysergamides of isomeric 2,4-dimethylazetidines map the binding orientation of the diethylamide moiety in the potent hallucinogenic agent N,N-diethyllysergamide (LSD). J Med Chem 45(19):4344–4349

    Google Scholar 

  • Passie T, Halpern JH, Stichtenoth DO, Emrich HM, Hintzen A (2008) The pharmacology of lysergic acid diethylamide: a review. CNS Neurosci Ther 14:295–314

    Article  CAS  PubMed  Google Scholar 

  • Pham YT, Nosten F, Farinotti R, White NJ, Gimenez F (1999) Cerebral uptake of mefloquine enantiomers in fatal cerebral malaria. Int J Clin Pharmacol Ther 37(1):58–61

    CAS  PubMed  Google Scholar 

  • Rabin RA, Regina M, Doat M, Winter JC (2002) 5-HT2A receptor-stimulated phosphoinositide hydrolysis in the stimulus effects of hallucinogens. Pharmacol Biochem Behav 72(1-2):29–37

    Article  CAS  PubMed  Google Scholar 

  • Sarihi A, Mirnajafi-Zadeh J, Jiang B, Sohya K, Safari MS, Arami MK, Yanagawa Y, Tsumoto T (2012) Cell type-specific, presynaptic LTP of inhibitory synapses on fast-spiking GABAergic neurons in the mouse visual cortex. J Neurosci 32(28):13189–13199

    Article  CAS  PubMed  Google Scholar 

  • Schlagenhauf P, Adamcova M, Regep L, Schaerer MT, Bansod S, Rhein HG. (2011) Use of mefloquine in children- a review of dosage, pharmacokinetics and tolerability data.  Malar J 10:292–302

    Google Scholar 

  • Schlagenhauf P, Johnson R, Schwartz E, Nothdurft HD, Steffen R (2009) Evaluation of mood profiles during malaria chemoprophylaxis: a randomized, double-blind, four-arm study. J Travel Med 16(1):42–45

    Article  PubMed  Google Scholar 

  • Simpson JA, Price R, ter Kuile F, Teja-Isavatharm P, Nosten F, Chongsuphajaisiddhi T, Looareesuwan S, Aarons L, White NJ (1999) Population pharmacokinetics of mefloquine in patients with acute falciparum malaria. Clin Pharmacol Ther 66(5):472–484

    Article  CAS  PubMed  Google Scholar 

  • Sleight AJ, Stam NJ, Mutel V, Vanderheyden PM (1996) Radiolabelling of the human 5-HT2A receptor with an agonist, a partial agonist and an antagonist: effects on apparent agonist affinities. Biochem Pharmacol 51(1):71–76

    Article  CAS  PubMed  Google Scholar 

  • Thompson AJ, Lummis SC (2008) Antimalarial drugs inhibit human 5-HT3 and GABAA but not GABAC receptors. Br J Pharmacol 153(8):1686–1696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson AJ, Lochner M, Lummis SC (2007) The antimalarial drugs quinine, chloroquine and mefloquine are antagonists at 5-HT3 receptors. Br J Pharmacol 151(5):666–677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomson AM, West DC, Lodge D (1985) An N-methylaspartate receptor-mediated synapse in rat cerebral cortex: a site of action of ketamine? Nature 313(6002):479–481

    Article  CAS  PubMed  Google Scholar 

  • Toll L, Berzetei-Gurske IP, Polgar WE, Brandt SR, Adapa ID, Rodriguez L, Schwartz RW, Haggart D, O'Brien A, White A, Kennedy JM, Craymer K, Farrington L, Auh JS (1998) Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications. NIDA Res Monogr 178:440–466

    CAS  PubMed  Google Scholar 

  • Toovey S (2009) Mefloquine neurotoxicity: a literature review. Travel Med Infect Dis 7(1):2–6

    Article  PubMed  Google Scholar 

  • Van Riemsdijk MM, Sturkenboom MC, Pepplinkhuizen L, Stricker BH (2005) Mefloquine increases the risk of serious psychiatric events during travel abroad: a nationwide case-control study in the Netherlands. J Clin Psychiatry 66(2):199–204

    Article  PubMed  Google Scholar 

  • Wang Y, Denisova JV, Kang KS, Fontes JD, Zhu BT, Belousov AB. (2010) Neuronal gap junctions are required for NMDA receptor-mediated excitotoxicity: implications in ischemic stroke. J Neurophysiol 104(6):3551–3556.

    Google Scholar 

  • Weidekamm E, Rüsing G, Caplain H, Sörgel F, Crevoisier C (1998) Lack of bioequivalence of a generic mefloquine tablet with the standard product. Eur J Clin Pharmacol 54(8):615–619

    Article  CAS  PubMed  Google Scholar 

  • Weiss SM, Benwell K, Cliffe IA, Gillespie RJ, Knight AR, Lerpiniere J, Misra A, Pratt RM, Revell D, Upton R, Dourish CT (2003) Discovery of nonxanthine adenosine A2A receptor antagonists for the treatment of Parkinson's disease. Neurology 61(11 Suppl 6):S101–S106

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yuan Chou for technical expertise in the mitogenesis assays. This work was supported by a grant from the National Institute on Drug Abuse [1P50 DA018165], and NIH/VA Interagency Agreement [ADA 12013], a V.A. Merit Review [1I01BX000939-01] and the V.A. Research Career Scientist Program (AJ), and by the Bill and Melinda Gates Foundation (TMZ).

Conflict of interest

There are no conflicts of interest. The authors have full control of primary data and will allow the journal to review their data if requested.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Janowsky.

Additional information

Authorship contributions

Participated in research design: Janowsky, Smilkstein, Hinrichs, and Riscoe

Contributed new reagents or analytical tools: Yang, and Zabriskie

Performed experiments and conducted data analysis: Johnson, Wolfrum, Yang, and Eshleman

Wrote or contributed to the writing of the manuscript: Janowsky, Smilkstein, Riscoe, Eshleman, and Zabriskie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janowsky, A., Eshleman, A.J., Johnson, R.A. et al. Mefloquine and psychotomimetics share neurotransmitter receptor and transporter interactions in vitro. Psychopharmacology 231, 2771–2783 (2014). https://doi.org/10.1007/s00213-014-3446-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3446-0

Keywords

Navigation