Skip to main content
Log in

Mephedrone and methylenedioxypyrovalerone (MDPV), major constituents of “bath salts,” produce opposite effects at the human dopamine transporter

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

An Erratum to this article was published on 14 March 2013

Abstract

Rationale

Psychoactive “bath salts” represent a relatively new drug of abuse combination that was placed in Schedule I in October 2011. Two common ingredients of bath salts include the cathinone analogs: mephedrone and methylenedioxypyrovalerone (MDPV). The mechanism of action of these synthetic cathinone analogs has not been well investigated.

Materials and methods

Because cathinone and methcathinone are known to act as releasing agents at the human dopamine transporter (hDAT), mephedrone and MDPV were investigated at hDAT expressed in Xenopus oocytes.

Results

Whereas mephedrone was found to have the signature of a dopamine-releasing agent similar to methamphetamine or methcathinone, MDPV behaved as a cocaine-like reuptake inhibitor of dopamine.

Conclusions

Mephedrone and MDPV produce opposite electrophysiological signatures through hDAT expressed in oocytes. Implications are that the combination (as found in bath salts) might produce effects similar to a combination of methamphetamine and cocaine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balint EE, Falkay G, Balint GA (2009) Khat—a controversial plant. Wein Klin Wochenschr 121:604–614

    Article  Google Scholar 

  • Baumann MH, Ayestas MA Jr, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 37:1192–1203

    Article  PubMed  CAS  Google Scholar 

  • Dal Cason TA, Young R, Glennon RA (1997) Cathinone: an investigation of several N-alkyl and methylenedioxy analogs. Pharmacol Biochem Behav 58:1109–1116

    Article  PubMed  CAS  Google Scholar 

  • de Durnaga S, Sanchez J (1929) A homolog of ephedrine. Bull Soc Chim Fr 45:284–286

    Google Scholar 

  • DeFelice LJ, Goswami T (2007) Transporters as channels. Annu Rev Physiol 69:87–112

    Article  PubMed  CAS  Google Scholar 

  • Federal Register (2011) Schedules of controlled substances: temporary placement of three synthetic cathinones into Schedule I. Fed Regist 76:65371–65375, October 21

    Google Scholar 

  • Fuwa T, Fukumori N, Tanaka T, Kubo Y, Ogata A, Uehara S, Honda Y, Kodama T (2007) Microdialysis study of drug effects on central nervous system: changes of dopamine levels in mice striatum after oral administration of methylenedioxypyrovalerone. Ann Rep Tokyo Metr Inst P H 58:287–292

    CAS  Google Scholar 

  • Glennon RA, Showalter D (1981) The effect of cathinone and several related derivatives on locomotor activity. Res Commun Subst Abuse 2:186–192

    CAS  Google Scholar 

  • Glennon RA, Young R (2011) Drug discrimination: application to medicinal chemistry and drug studies. Wiley, Hoboken

    Book  Google Scholar 

  • Glennon RA, Young R, Martin BR, Dal Cason TA (1995) Methcathinone (“CAT”): an enantiomeric potency comparison. Pharmacol Biochem Behav 50:601–606

    Article  PubMed  CAS  Google Scholar 

  • Glennon RA, Yousif M, Naiman NA, Kalix P (1987) Methcathinone: a new and potent amphetamine-like agent. Pharmacol Biochem Behav 26:547–551

    Article  PubMed  CAS  Google Scholar 

  • Hadlock GC, Webb KM, McFadden LM, Chu PW, Ellis JD, Allen SC, Andrenyak DM, Vieira-Brock PL, German CL, Conrad KM, Hoonakker AJ, Gibb JW, Wilkins DG, Hanson GR, Fleckenstein AE (2011) 4-Methylmethcathinone (mephedrone): neuropharmacological effects of a designer stimulant of abuse. J Pharmacol Exp Ther 339:530–536

    Article  PubMed  CAS  Google Scholar 

  • Iversen LE (2010) Consideration of the cathinones. Advisory Council on the Misuse of Drugs. A report submitted to the Home Secretary of the UK (March 31, 2010)

  • Iwamoto H, Blakely L, De Felice LJ (2006) Na+, Cl, and pH dependence of the human choline transporter (hCHT) in Xenopus oocytes: the proton inactivation hypothesis of hCHT in synaptic vesicles. J Neurosci 26:9851–9859

    Article  PubMed  CAS  Google Scholar 

  • Kalix P (1980) A constituent of khat leaves with amphetamine-like releasing properties. Eur J Pharmacol 68:213–215

    Article  PubMed  CAS  Google Scholar 

  • Kalix P (1984) The pharmacology of khat. Gen Pharmacol 15:179–187

    Article  PubMed  CAS  Google Scholar 

  • Kalix P (1996) Catha edulis, a plant that has amphetamine effects. Pharm World Sci 18:69–73

    Article  PubMed  CAS  Google Scholar 

  • Kalix P (1992) Cathinone, a natural amphetamine. Pharmacol Toxicol 70:77–86

    Article  PubMed  CAS  Google Scholar 

  • Kalix P, Braeden O (1985) Pharmacological aspects of the chewing of khat leaves. Pharmacol Rev 37:149–164

    PubMed  CAS  Google Scholar 

  • Kalix P, Glennon RA (1986) Further evidence for an amphetamine-like mechanism of action of the alkaloid cathinone. Biochem Pharmacol 35:3015–3019

    Article  PubMed  CAS  Google Scholar 

  • Kehr J, Ichinose F, Yoshitake S, Goiny M, Sievertsson T, Nyberg F, Yoshitake T (2011) Mephedrone, compared to MDMA (ecstasy) and amphetamine, rapidly increases both dopamine and serotonin levels in nucleus accumbens of awake rats. Br J Pharmacol 164:1949–1958

    Article  PubMed  CAS  Google Scholar 

  • Kennedy JG, Teague J, Fairbanks L (1980) Qat use in North Yemen and the problem of addiction: A study in medical anthroplology. Cult Med Psychiat 4:311–344

    Article  CAS  Google Scholar 

  • Köppe H, Ludwig G, Holstein W, Zile L (1969) 1-(3’,4’-Methylenedioxy-phenyl-2-pyrrlidino-alkanones-(1). US Patent 3,478,050, November 11, 1969.

  • Martínez-Clemente J, Escubedo E, Pubill D, Camarasa J (2012) Interaction of mephedrone with dopamine and serotonin targets in rats. Eur Neuropsychopharmacol 22:231–236

    Article  PubMed  Google Scholar 

  • Meltzer PC, Butler D, Deschamps JR, Madras BK (2006) 1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (pyrovalerone) analogues: a promising class of monoamine uptake inhibitors. J Med Chem 49:1420–1432

    Article  PubMed  CAS  Google Scholar 

  • Ramsey S, De Felice LJ (2002) Serotonin transporter function and pharmacology are sensitive to expression level: evidence for an endogenous regulatory factor. J Biol Chem 277:14475–14482

    PubMed  CAS  Google Scholar 

  • Rodriguez-Menchaca AA, Solis E Jr, Cameron K, De Felice LJ (2012) (+)Amphetamine induces a persistent leak in the human dopamine transporter: Molecular stent hypothesis. Br J Pharmacol 156:2749–2757

    Article  Google Scholar 

  • Simmler LD, Buser TA, Donzelli M, Schramm Y, Diue LH, Huwyler J, Chaboz S, Hoener MC, Liechti ME (2012) Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol. doi:10.1111/j.1476-5381.2012.02145.x

  • Sonders MS, Zhu SJ, Zahniser NR, Kavanaugh MP, Amara SG (1997) Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J Neurosci 17:960–174

    PubMed  CAS  Google Scholar 

  • Spiller HA, Ryan ML, Weston RG, Jansen J (2011) Clinical experience with and analytical confirmation of 'bath salts' and 'legal highs' (synthetic cathinones) in the United States. Clin Toxicol 49:499–505

    Article  CAS  Google Scholar 

  • United Nations (1979) The botany and chemistry of khat. United Nations Narcotics Laboratory Report of an Expert Group, Antananarivo, Madagascar, November 27–December 1, 1978, MNAR Document 3/1979

  • Young R, Glennon RA (1998) Discriminative stimulus effects of S(−)-methcathinone (MCAT): a potent stimulant drug of abuse. Psychopharmacol (Berl) 140:250–256

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by PHS grant DA033930 and DA02694702.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Louis De Felice or Richard A. Glennon.

Additional information

Presented at the 63rd Southeast Regional American Chemical Society meeting (Abstract 249), Richmond, VA, 26–29 October 2011. Presented at the 56th Annual meeting of the Biophysical Society (Abstract 1086-Plat), San Diego, CA, 24–28 February 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cameron, K., Kolanos, R., Verkariya, R. et al. Mephedrone and methylenedioxypyrovalerone (MDPV), major constituents of “bath salts,” produce opposite effects at the human dopamine transporter. Psychopharmacology 227, 493–499 (2013). https://doi.org/10.1007/s00213-013-2967-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-2967-2

Keywords

Navigation