Skip to main content
Log in

Reduction in phencyclidine induced sensorimotor gating deficits in the rat following increased system xc activity in the medial prefrontal cortex

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Aspects of schizophrenia, including deficits in sensorimotor gating, have been linked to glutamate dysfunction and/or oxidative stress in the prefrontal cortex. System xc , a cystine–glutamate antiporter, is a poorly understood mechanism that contributes to both cellular antioxidant capacity and glutamate homeostasis.

Objectives

Our goal was to determine whether increased system xc activity within the prefrontal cortex would normalize a rodent measure of sensorimotor gating.

Methods

In situ hybridization was used to map messenger RNA (mRNA) expression of xCT, the active subunit of system xc , in the prefrontal cortex. Prepulse inhibition was used to measure sensorimotor gating; deficits in prepulse inhibition were produced using phencyclidine (0.3–3 mg/kg, sc). N-Acetylcysteine (10–100 μM) and the system xc inhibitor (S)-4-carboxyphenylglycine (CPG, 0.5 μM) were used to increase and decrease system xc activity, respectively. The uptake of 14C-cystine into tissue punches obtained from the prefrontal cortex was used to assay system xc activity.

Results

The expression of xCT mRNA in the prefrontal cortex was most prominent in a lateral band spanning primarily the prelimbic cortex. Although phencyclidine did not alter the uptake of 14C-cystine in prefrontal cortical tissue punches, intraprefrontal cortical infusion of N-acetylcysteine (10–100 μM) significantly reduced phencyclidine- (1.5 mg/kg, sc) induced deficits in prepulse inhibition. N-Acetylcysteine was without effect when coinfused with CPG (0.5 μM), indicating an involvement of system xc .

Conclusions

These results indicate that phencyclidine disrupts sensorimotor gating through system xc independent mechanisms, but that increasing cystine–glutamate exchange in the prefrontal cortex is sufficient to reduce behavioral deficits produced by phencyclidine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angulo MC, Kozlov AS, Charpak S, Audinat E (2004) Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci 24:6920–6927

    Article  PubMed  CAS  Google Scholar 

  • Araque A, Li N, Doyle RT, Haydon PG (2000) SNARE protein-dependent glutamate release from astrocytes. Neuroscience 20:666–673

    PubMed  CAS  Google Scholar 

  • Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW (2002) The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 22:9134–9141

    PubMed  CAS  Google Scholar 

  • Baker DA, Madayag A, Kristiansen LV, Meador-Woodruff JH, Haroutunian V, Raju I (2008) Contribution of cystine–glutamate antiporters to the psychotomimetic effects of phencyclidine. Neuropsychopharmacology 33:1760–1772

    Article  PubMed  CAS  Google Scholar 

  • Bakshi VP, Swerdlow NR, Geyer MA (1994) Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response. J Pharmacol Exp Ther 271:787–794

    PubMed  CAS  Google Scholar 

  • Bannai S (1984) Induction of cystine and glutamate transport activity in human fibroblasts by diethyl maleate and other electrophilic agents. J Biol Chem 259:2435–2440

    PubMed  CAS  Google Scholar 

  • Bannai S (1986) Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 261:2256–2263

    PubMed  CAS  Google Scholar 

  • Bannai S, Kitamura E (1980) Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J Biol Chem 255:2372–2376

    PubMed  CAS  Google Scholar 

  • Battaglia G, Monn JA, Schoepp DD (1997) In vivo inhibition of veratridine-evoked release of striatal excitatory amino acids by the group II metabotropic glutamate receptor agonist LY354740 in rats. Neurosci Lett 229:161–164

    Article  PubMed  CAS  Google Scholar 

  • Berk M, Copolov D, Dean O, Lu K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Judd F, Katz F, Katz P, Ording-Jespersen S, Little J, Conus P, Cuenod M, Do KQ, Bush AI (2008) N-acetyl cysteine as a glutathione precursor for schizophrenia—a double-blind, randomized, placebo-controlled trial. Biol Psychiatry 64:361–368

    Article  PubMed  CAS  Google Scholar 

  • Berk M, Munib A, Dean O, Malhi GS, Kohlmann K, Schapkaitz I, Jeavons S, Katz F, Anderson-Hunt M, Conus P, Hanna B, Otmar R, Ng F, Copolov DL, Bush AI (2011) Qualitative methods in early-phase drug trials: broadening the scope of data and methods from an RCT of N-acetylcysteine in schizophrenia. J Clin Psychiatry 72:909–913

    Article  PubMed  CAS  Google Scholar 

  • Berman KF, Zec RF, Weinberger DR (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. II. Role of neuroleptic treatment, attention, and mental effort. Arch Gen Psychiatry 43:126–135

    Article  PubMed  CAS  Google Scholar 

  • Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 47:181–188

    Article  PubMed  CAS  Google Scholar 

  • Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343

    Article  PubMed  CAS  Google Scholar 

  • Bridges RJ (2012) System x(c) (−) cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol 165:20–34

    Google Scholar 

  • Bridges R, Lutgen V, Lobner D, Baker DA (2012) Thinking outside the cleft to understand synaptic activity: contribution of the cystine–glutamate antiporter (system xc ) to normal and pathological glutamatergic signaling. Pharmacol Rev 64:780–802

    Article  PubMed  CAS  Google Scholar 

  • Bunney WE, Bunney BG (2000) Evidence for a compromised dorsolateral prefrontal cortical parallel circuit in schizophrenia. Brain Res Brain Res Rev 31:138–146

    Article  PubMed  CAS  Google Scholar 

  • Cabungcal JH, Preissmann D, Delseth C, Cuenod M, Do KQ, Schenk F (2007) Transitory glutathione deficit during brain development induces cognitive impairment in juvenile and adult rats: relevance to schizophrenia. Neurobiol Dis 26:634–645

    Article  PubMed  CAS  Google Scholar 

  • Chen HH, Stoker A, Markou A (2010) The glutamatergic compounds sarcosine and N-acetylcysteine ameliorate prepulse inhibition deficits in metabotropic glutamate 5 receptor knockout mice. Psychopharmacology (Berl) 209:343–350

    Article  CAS  Google Scholar 

  • Cho Y, Bannai S (1990) Uptake of glutamate and cysteine in C-6 glioma cells and in cultured astrocytes. J Neurochem 55:2091–2097

    Article  PubMed  CAS  Google Scholar 

  • Cilia J, Hatcher P, Reavill C, Jones DN (2007) (+/−) Ketamine-induced prepulse inhibition deficits of an acoustic startle response in rats are not reversed by antipsychotics. J Psychopharmacol 21:302–311

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  PubMed  CAS  Google Scholar 

  • das Neves Duarte JM, Kulak A, Gholam-Razaee MM, Cuenod M, Gruetter R, Do KQ (2012) N-Acetylcysteine normalizes neurochemical changes in the glutathione-deficient schizophrenia mouse model during development. Biol Psychiatry 71:1006–1014

  • Deserno L, Sterzer P, Wustenberg T, Heinz A, Schlagenhauf F (2012) Reduced prefrontal–parietal effective connectivity and working memory deficits in schizophrenia. J Neurosci 32:12–20

    Article  PubMed  CAS  Google Scholar 

  • Do KQ, Trabesinger AH, Kirsten-Kruger M, Lauer CJ, Dydak U, Hell D, Holsboer F, Boesiger P, Cuenod M (2000) Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 12:3721–3728

    Article  PubMed  CAS  Google Scholar 

  • Franzen G, Ingvar DH (1975) Absence of activation in frontal structures during psychological testing of chronic schizophrenics. J Neurol Neurosurg Psychiatry 38:1027–1032

    Article  PubMed  CAS  Google Scholar 

  • Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM, Barnes TR, Hirsch SR (1998) Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 65:446–453

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 156:117–154

    Article  CAS  Google Scholar 

  • Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57:65–73

    Article  PubMed  CAS  Google Scholar 

  • Goghari VM, Sponheim SR, MacDonald AW 3rd (2010) The functional neuroanatomy of symptom dimensions in schizophrenia: a qualitative and quantitative review of a persistent question. Neurosci Biobehav Rev 34:468–486

    Article  PubMed  Google Scholar 

  • Graham FK (1974) Presidential Address, (1975). The more or less startling effects of weak prestimulation. Psychophysiology 12:238–248

    Article  Google Scholar 

  • Gysin R, Kraftsik R, Boulat O, Bovet P, Conus P, Comte-Krieger E, Polari A, Steullet P, Preisig M, Teichmann T, Cuenod M, Do KQ (2011) Genetic dysregulation of glutathione synthesis predicts alteration of plasma thiol redox status in schizophrenia. Antioxid Redox Signal 15:2003–2010

    Article  PubMed  CAS  Google Scholar 

  • Ingvar DH, Franzen G (1974) Abnormalities of cerebral blood flow distribution in patients with chronic schizophrenia. Acta Psychiatr Scand 50:425–462

    Article  PubMed  CAS  Google Scholar 

  • Jackson ME, Homayoun H, Moghaddam B (2004) NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc Natl Acad Sci USA 101:8467–8472

    Article  PubMed  CAS  Google Scholar 

  • Janaky R, Ogita K, Pasqualotto BA, Bains JS, Oja SS, Yoneda Y, Shaw CA (1999) Glutathione and signal transduction in the mammalian CNS. J Neurochem 73:889–902

    Article  PubMed  CAS  Google Scholar 

  • Japha K, Koch M (1999) Picrotoxin in the medial prefrontal cortex impairs sensorimotor gating in rats: reversal by haloperidol. Psychopharmacology (Berl) 144:347–354

    Article  CAS  Google Scholar 

  • Javitt DC, Schoepp D, Kalivas PW, Volkow ND, Zarate C, Merchant K, Bear MF, Umbricht D, Hajos M, Potter WZ, Lee CM (2011) Translating glutamate: from pathophysiology to treatment. Sci Transl Med 3: 102mr2

  • Kau KS, Madayag A, Mantsch JR, Grier MD, Abdulhameed O, Baker DA (2008) Blunted cystine–glutamate antiporter function in the nucleus accumbens promotes cocaine-induced drug seeking. Neuroscience 155:530–537

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Bubser M (1994) Deficient sensorimotor gating after 6-hydroxydopamine lesion of the rat medial prefrontal cortex is reversed by haloperidol. Eur J Neurosci 6:1837–1845

    Article  PubMed  CAS  Google Scholar 

  • Kranich O, Dringen R, Sandberg M, Hamprecht B (1998) Utilization of cysteine and cysteine precursors for the synthesis of glutathione in astroglial cultures: preference for cystine. Glia 22:11–18

    Article  PubMed  CAS  Google Scholar 

  • Kulak A, Cuenod M, Do KQ (2012) Behavioral phenotyping of glutathione-deficient mice: relevance to schizophrenia and bipolar disorder. Behav Brain Res 226:563–570

    Article  PubMed  CAS  Google Scholar 

  • Kumari V, Fannon D, Geyer MA, Premkumar P, Antonova E, Simmons A, Kuipers E (2008) Cortical grey matter volume and sensorimotor gating in schizophrenia. Cortex 44:1206–1214

    Article  PubMed  Google Scholar 

  • Kupchik YM, Moussawi K, Tang XC, Wang X, Kalivas BC, Kolokithas R, Ogburn KB, Kalivas PW (2011) The Effect of n-acetylcysteine in the nucleus accumbens on neurotransmission and relapse to cocaine. Biol Psychiatry

  • Li M, He E, Volf N (2011) Time course of the attenuation effect of repeated antipsychotic treatment on prepulse inhibition disruption induced by repeated phencyclidine treatment. Pharmacol Biochem Behav 98:559–569

    Article  PubMed  CAS  Google Scholar 

  • Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RS, Davis SM, Davis CE, Lebowitz BD, Severe J, Hsiao JK (2005) Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 353:1209–1223

    Article  PubMed  CAS  Google Scholar 

  • Lobner D, Lipton P (1993) Intracellular calcium levels and calcium fluxes in the CA1 region of the rat hippocampal slice during in vitro ischemia: relationship to electrophysiological cell damage. J Neurosci 13:4861–4871

    PubMed  CAS  Google Scholar 

  • Majic T, Rentzsch J, Gudlowski Y, Ehrlich S, Juckel G, Sander T, Lang UE, Winterer G, Gallinat J (2011) COMT Val108/158Met genotype modulates human sensory gating. Neuroimage 55:818–824

    Article  PubMed  CAS  Google Scholar 

  • Marino MJ, Wittmann M, Bradley SR, Hubert GW, Smith Y, Conn PJ (2001) Activation of group I metabotropic glutamate receptors produces a direct excitation and disinhibition of GABAergic projection neurons in the substantia nigra pars reticulata. J Neurosci 21:7001–7012

    PubMed  CAS  Google Scholar 

  • Matsuzawa D, Obata T, Shirayama Y, Nonaka H, Kanazawa Y, Yoshitome E, Takanashi J, Matsuda T, Shimizu E, Ikehira H, Iyo M, Hashimoto K (2008) Negative correlation between brain glutathione level and negative symptoms in schizophrenia: a 3 T 1H-MRS study. PLoS One 3:e1944

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B, Adams BW (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281:1349–1352

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B, Javitt D (2012) From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 37:4–15

    Article  PubMed  CAS  Google Scholar 

  • Moran MM, McFarland K, Melendez RI, Kalivas PW, Seamans JK (2005) Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. J Neurosci 25:6389–6393

    Article  PubMed  CAS  Google Scholar 

  • Morris BJ, Cochran SM, Pratt JA (2005) PCP: from pharmacology to modelling schizophrenia. Curr Opin Pharmacol 5:101–106

    Article  PubMed  CAS  Google Scholar 

  • Moussawi K, Pacchioni A, Moran M, Olive MF, Gass JT, Lavin A, Kalivas PW (2009) N-Acetylcysteine reverses cocaine-induced metaplasticity. Nat Neurosci 12:182–189

    Article  PubMed  CAS  Google Scholar 

  • Moussawi K, Zhou W, Shen H, Reichel CM, See RE, Carr DB, Kalivas PW (2011) Reversing cocaine-induced synaptic potentiation provides enduring protection from relapse. Proc Natl Acad Sci USA 108:385–390

    Article  PubMed  Google Scholar 

  • Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553

    Article  PubMed  CAS  Google Scholar 

  • Ogita K, Enomoto R, Nakahara F, Ishitsubo N, Yoneda Y (1995) A possible role of glutathione as an endogenous agonist at the N-methyl-D-aspartate recognition domain in rat brain. J Neurochem 64:1088–1096

    Article  PubMed  CAS  Google Scholar 

  • Oranje B, Van Oel CJ, Gispen-De Wied CC, Verbaten MN, Kahn RS (2002) Effects of typical and atypical antipsychotics on the prepulse inhibition of the startle reflex in patients with schizophrenia. J Clin Psychopharmacol 22:359–365

    Article  PubMed  CAS  Google Scholar 

  • Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747

    Article  PubMed  CAS  Google Scholar 

  • Pasti L, Zonta M, Pozzan T, Vicini S, Carmignoto G (2001) Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J Neurosci 21:477–484

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, New York

    Google Scholar 

  • Piani D, Fontana A (1994) Involvement of the cystine transport system xc in the macrophage-induced glutamate-dependent cytotoxicity to neurons. J Immunol 152:3578–3585

    PubMed  CAS  Google Scholar 

  • Poskanzer KE, Yuste R (2011) Astrocytic regulation of cortical UP states. Proc Natl Acad Sci USA 108:18453–18458

    Article  PubMed  Google Scholar 

  • Potkin SG, Turner JA, Brown GG, McCarthy G, Greve DN, Glover GH, Manoach DS, Belger A, Diaz M, Wible CG, Ford JM, Mathalon DH, Gollub R, Lauriello J, O’Leary D, van Erp TG, Toga AW, Preda A, Lim KO (2009) Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. Schizophr Bull 35:19–31

    Article  PubMed  CAS  Google Scholar 

  • Pow DV (2001) Visualising the activity of the cystine–glutamate antiporter in glial cells using antibodies to aminoadipic acid, a selectively transported substrate. Glia 34:27–38

    Article  PubMed  CAS  Google Scholar 

  • Raffa M, Atig F, Mhalla A, Kerkeni A, Mechri A (2011) Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naive first-episode schizophrenic patients. BMC Psychiatry 11:124

    Article  PubMed  CAS  Google Scholar 

  • Rajkowska G, Selemon LD, Goldman-Rakic PS (1998) Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry 55:215–224

    Article  PubMed  CAS  Google Scholar 

  • Sagara JI, Miura K, Bannai S (1993) Maintenance of neuronal glutathione by glial cells. J Neurochem 61:1672–1676

    Article  PubMed  CAS  Google Scholar 

  • Schwabe K, Brosda J, Wegener N, Koch M (2005) Clozapine enhances disruption of prepulse inhibition after sub-chronic dizocilpine- or phencyclidine-treatment in Wistar rats. Pharmacol Biochem Behav 80:213–219

    Article  PubMed  CAS  Google Scholar 

  • Seib TM, Patel SA, Bridges RJ (2011) Regulation of the System x(−) (C) cystine/glutamate exchanger by intracellular glutathione levels in rat astrocyte primary cultures. Glia 59:1387–1401

    Google Scholar 

  • Shimosato K, Marley RJ, Saito T (1995) Differential effects of NMDA receptor and dopamine receptor antagonists on cocaine toxicities. Pharmacol Biochem Behav 51:781–788

    Article  PubMed  CAS  Google Scholar 

  • Steullet P, Neijt HC, Cuenod M, Do KQ (2006) Synaptic plasticity impairment and hypofunction of NMDA receptors induced by glutathione deficit: relevance to schizophrenia. Neuroscience 137:807–819

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Braff DL, Geyer MA, Koob GF (1986) Central dopamine hyperactivity in rats mimics abnormal acoustic startle response in schizophrenics. Biol Psychiatry 21:23–33

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology (Berl) 156:194–215

    Article  CAS  Google Scholar 

  • Swerdlow NR, Light GA, Cadenhead KS, Sprock J, Hsieh MH, Braff DL (2006) Startle gating deficits in a large cohort of patients with schizophrenia: relationship to medications, symptoms, neurocognition, and level of function. Arch Gen Psychiatry 63:1325–1335

    Article  PubMed  Google Scholar 

  • Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL (2008) Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl) 199:331–388

    Article  CAS  Google Scholar 

  • van Veelen NM, Vink M, Ramsey NF, Kahn RS (2010) Left dorsolateral prefrontal cortex dysfunction in medication-naive schizophrenia. Schizophr Res 123:22–29

    Article  PubMed  Google Scholar 

  • Wilmsmeier A, Ohrmann P, Suslow T, Siegmund A, Koelkebeck K, Rothermundt M, Kugel H, Arolt V, Bauer J, Pedersen A (2010) Neural correlates of set-shifting: decomposing executive functions in schizophrenia. J Psychiatry Neurosci 35:321–329

    Article  PubMed  Google Scholar 

  • Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grants DA017328 (DAB), DA025617 (DAB), DK074734 (SC), as well as by The Brain and Behavior Research Fund (DAB).

Disclosure

David A. Baker owns shares in Promentis Pharmaceuticals, a company developing novel antipsychotic agents. Promentis did not sponsor or otherwise support the experiments contained in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutgen, V., Qualmann, K., Resch, J. et al. Reduction in phencyclidine induced sensorimotor gating deficits in the rat following increased system xc activity in the medial prefrontal cortex. Psychopharmacology 226, 531–540 (2013). https://doi.org/10.1007/s00213-012-2926-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2926-3

Keywords

Navigation