Skip to main content

Advertisement

Log in

Cannabinoid-induced conditioned place preference in the spontaneously hypertensive rat–an animal model of attention deficit hyperactivity disorder

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Cannabis preparations are the most widely consumed illicit drugs, and their use typically begins in adolescence. The prevalence of cannabis abuse is higher in patients with attention deficit/hyperactivity disorder (ADHD) than in the general population, yet, knowledge about the motivational properties of cannabinoids in animal models of ADHD are lacking.

Objective

To compare the motivational effects of the synthetic cannabinoid agonist WIN55,212-2 (WIN) in adolescent and adult spontaneously hypertensive rats (SHR), a validated animal model of ADHD, and Wistar rats, representing a “normal” genetically heterogeneous population. We also asked whether the effects of WIN depended (1) on the activation of the cerebral subtype of cannabinoid receptors, namely, the CB1 cannabinoid receptor and (2) on putative changes by WIN in blood pressure.

Methods

WIN was tested under an unbiased conditioned place preference (CPP) paradigm. Blood pressure after WIN administration was also monitored in additional groups of rats.

Results

In the Wistar rats, WIN produced place aversion only in the adult but not adolescent rats. In contrast, WIN produced CPP in both adolescent and adult SHR rats. The behavioral effects of WIN were CB1-mediated and not related to blood pressure.

Conclusion

The contrasting effects of WIN in Wistar and SHR, and the higher resistance of adolescent rats to the aversive and rewarding effects of WIN in these two strains suggests that both adolescence and the ADHD-like profile exhibited by the SHR strain constitute factors that influence the motivational properties of cannabinoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adriani W, Laviola G. Windows of vulnerability to psychopathology and therapeutic strategy in the adolescent rodent model. Behav Pharmacol. 2004;15:341–352.

    Article  PubMed  CAS  Google Scholar 

  • Adriani W, Seta DD, Dessi-Fulgheri F, Farabollini F, Laviola G. Altered profiles of spontaneous novelty seeking, impulsive behavior, and response to d-amphetamine in rats perinatally exposed to bisphenol A. Environ Health Perspect. 2003;111:395–401.

    PubMed  CAS  Google Scholar 

  • Andersen SL, Arvanitogiannis A, Pliakas AM, LeBlanc C, Carlezon WA Jr. Altered responsiveness to cocaine in rats exposed to methylphenidate during development. Nat Neurosci. 2002;5:13–14.

    Article  PubMed  CAS  Google Scholar 

  • Augustyniak PN, Kourrich S, Rezazadeh SM, Stewart J, Arvanitogiannis A. Differential behavioral and neurochemical effects of cocaine after early exposure to methylphenidate in an animal model of attention deficit hyperactivity disorder. Behav Brain Res. 2006;167:379–382.

    Article  PubMed  CAS  Google Scholar 

  • Batkai S, Pacher P, Osei-Hyiaman D, Radaeva S, Liu J, Harvey-White J, et al. Endocannabinoids acting at cannabinoid-1 receptors regulate cardiovascular function in hypertension. Circulation. 2004;110:1996–2002.

    Article  PubMed  CAS  Google Scholar 

  • Biederman J, Faraone SV, Spencer T, Wilens T, Mick E, Lapey KA. Gender differences in a sample of adults with attention deficit hyperactivity disorder. Psychiatry Res. 1994;53:13–29.

    Article  PubMed  CAS  Google Scholar 

  • Biederman J, Monuteaux MC, Mick E, Spencer T, Wilens TE, Silva JM, et al. Young adult outcome of attention deficit hyperactivity disorder: a controlled 10-year follow-up study. Psychol Med. 2006;36:167–179.

    Article  PubMed  Google Scholar 

  • Braida D, Iosue S, Pegorini S, Sala M. Delta9-tetrahydrocannabinol-induced conditioned place preference and intracerebroventricular self-administration in rats. Eur J Pharmacol. 2004;506:63–69.

    Article  PubMed  CAS  Google Scholar 

  • Carney JM, Uwaydah IM, Balster RL. Evaluation of a suspension system for intravenous self-administration studies of water-insoluble compounds in the rhesus monkey. Pharmacol Biochem Behav. 1977;7:357–364.

    Article  PubMed  CAS  Google Scholar 

  • Chambers RA, Taylor JR, Potenza MN. Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am J Psychiatry. 2003;160:1041–1052.

    Article  PubMed  Google Scholar 

  • Chiu P, Rajakumar G, Chiu S, Kwan CY, Mishra RK. Enhanced [3H]spiroperidol binding in striatum of spontaneously hypertensive rat (SHR). Eur J Pharmacol. 1982;82:243–244.

    Article  PubMed  CAS  Google Scholar 

  • Crews F, He J, Hodge C. Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacol Biochem Behav. 2007;86:189–199.

    Article  PubMed  CAS  Google Scholar 

  • Crowley TJ, Macdonald MJ, Whitmore EA, Mikulich SK. Cannabis dependence, withdrawal, and reinforcing effects among adolescents with conduct symptoms and substance use disorders. Drug Alcohol Depend. 1998;50:27–37.

    Article  PubMed  CAS  Google Scholar 

  • Da Silva GE, Vendruscolo LF, Takahashi RN. Effects of ethanol on locomotor and anxiety-like behaviors and the acquisition of ethanol intake in Lewis and spontaneously hypertensive rats. Life Sci. 2005;77:693–706.

    Article  PubMed  Google Scholar 

  • Davids E, Zhang K, Tarazi FI, Baldessarini RJ. Animal models of attention-deficit hyperactivity disorder. Brain Res Brain Res Rev. 2003;42:1–21.

    Article  PubMed  Google Scholar 

  • Deiana S, Fattore L, Spano MS, Cossu G, Porcu E, Fadda P, et al. Strain and schedule-dependent differences in the acquisition, maintenance and extinction of intravenous cannabinoid self-administration in rats. Neuropharmacology. 2007;52:646–654.

    Article  PubMed  CAS  Google Scholar 

  • Fattore L, Cossu G, Martellotta CM, Fratta W. Intravenous self-administration of the cannabinoid CB1 receptor agonist WIN 55, 212–2 in rats. Psychopharmacology (Berl). 2001;156:410–416.

    Article  CAS  Google Scholar 

  • Gardner EL, Paredes W, Smith D, Donner A, Milling C, Cohen D, et al. Facilitation of brain stimulation reward by delta 9-tetrahydrocannabinol. Psychopharmacology (Berl). 1988;96:142–144.

    Article  CAS  Google Scholar 

  • Himelstein J, Newcorn JH, Halperin JM. The neurobiology of attention-deficit hyperactivity disorder. Front Biosci. 2000;5:461–478.

    Article  Google Scholar 

  • Hoffmann O, Plesan A, Wiesenfeld-Hallin Z. Genetic differences in morphine sensitivity, tolerance and withdrawal in rats. Brain Res. 1998;806:232–237.

    Article  PubMed  CAS  Google Scholar 

  • Justinova Z, Tanda G, Redhi GH, Goldberg SR. Self-administration of delta(9)-tetrahydrocannabinol (THC) by drug naive squirrel monkeys. Psychopharmacology (Berl). 2003;169:135–140.

    Article  CAS  Google Scholar 

  • Köfalvi A, Fritzsche M (2008) The Endocannabinoid System is a Major Player in Schizophrenia. In: Köfalvi, A. (Ed.), Cannabinoids and the Brain. Springer US, pp. 485-528. doi:10.1007/978-0-387-74349-3_22

  • Lake KD, Compton DR, Varga K, Martin BR, Kunos G. Cannabinoid-induced hypotension and bradycardia in rats mediated by CB1-like cannabinoid receptors. J Pharmacol Exp Ther. 1997;281:1030–1037.

    PubMed  CAS  Google Scholar 

  • Leite JR, Carlini EA. Failure to obtain “cannabis-directed behavior” and abstinence syndrome in rats chronically treated with cannabis sativa extracts. Psychopharmacologia. 1974;36:133–145.

    Article  PubMed  CAS  Google Scholar 

  • Lepore M, Vorel SR, Lowinson J, Gardner EL. Conditioned place preference induced by delta 9-tetrahydrocannabinol: comparison with cocaine, morphine, and food reward. Life Sci. 1995;56:2073–2080.

    Article  PubMed  CAS  Google Scholar 

  • Maharajan P, Maharajan V, Ravagnan G, Paino G. The weaver mutant mouse: a model to study the ontogeny of dopamine transmission systems and their role in drug addiction. Prog Neurobiol. 2001;64:269–276.

    Article  PubMed  CAS  Google Scholar 

  • Maldonado R, Valverde O, Berrendero F. Involvement of the endocannabinoid system in drug addiction. Trends Neurosci. 2006;29:225–232.

    Article  PubMed  CAS  Google Scholar 

  • Mansbach RS, Nicholson KL, Martin BR, Balster RL. Failure of Delta(9)-tetrahydrocannabinol and CP 55, 940 to maintain intravenous self-administration under a fixed-interval schedule in rhesus monkeys. Behav Pharmacol. 1994;5:219–225.

    Article  PubMed  CAS  Google Scholar 

  • Martellotta MC, Cossu G, Fattore L, Gessa GL, Fratta W. Self-administration of the cannabinoid receptor agonist WIN 55, 212–2 in drug-naive mice. Neuroscience. 1998;85:327–330.

    Article  PubMed  CAS  Google Scholar 

  • McGregor IS, Issakidis CN, Prior G. Aversive effects of the synthetic cannabinoid CP 55, 940 in rats. Pharmacol Biochem Behav. 1996;53:657–664.

    Article  PubMed  CAS  Google Scholar 

  • McKeon TW, Hendley ED. Brain monoamines and metabolites in hypertensive and hyperactive rat strains. Clin Exp Hypertens. 1988;10:971–994.

    CAS  Google Scholar 

  • Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963;27:282–293.

    PubMed  CAS  Google Scholar 

  • Pamplona FA, Prediger RD, Pandolfo P, Takahashi RN. The cannabinoid receptor agonist WIN 55, 212–2 facilitates the extinction of contextual fear memory and spatial memory in rats. Psychopharmacology (Berl). 2006;188:641–649.

    Article  CAS  Google Scholar 

  • Pamplona FA, Vendruscolo LF, Takahashi RN. Increased sensitivity to cocaine-induced analgesia in Spontaneously Hypertensive Rats (SHR). Behav Brain Funct. 2007;3:9.

    Article  PubMed  Google Scholar 

  • Pandolfo P, Pamplona FA, Prediger RD, Takahashi RN. Increased sensitivity of adolescent spontaneously hypertensive rats, an animal model of attention deficit hyperactivity disorder, to the locomotor stimulation induced by the cannabinoid receptor agonist WIN 55, 212–2. Eur J Pharmacol. 2007;563:141–148.

    Article  PubMed  CAS  Google Scholar 

  • Papa M, Diewald L, Carey MP, Esposito FJ, Gironi Carnevale UA, Sadile AG. A rostro-caudal dissociation in the dorsal and ventral striatum of the juvenile SHR suggests an anterior hypo- and a posterior hyperfunctioning mesocorticolimbic system. Behav Brain Res. 2002;130:171–179.

    Article  PubMed  CAS  Google Scholar 

  • Parker LA, Gillies T. THC-induced place and taste aversions in Lewis and Sprague–Dawley rats. Behav Neurosci. 1995;109:71–78.

    Article  PubMed  CAS  Google Scholar 

  • Quinn HR, Matsumoto I, Callaghan PD, Long LE, Arnold JC, Gunasekaran N, et al. Adolescent rats find repeated delta(9)-THC less aversive than adult rats but display greater residual cognitive deficits and changes in hippocampal protein expression following exposure. Neuropsychopharmacology. 2008;33:1113–1126.

    Article  PubMed  CAS  Google Scholar 

  • Ramos A, Kangerski AL, Basso PF, Da Silva Santos JE, Assreuy J, Vendruscolo LF, et al. Evaluation of Lewis and SHR rat strains as a genetic model for the study of anxiety and pain. Behav Brain Res. 2002;129:113–123.

    Article  PubMed  Google Scholar 

  • Robbe D, Kopf M, Remaury A, Bockaert J, Manzoni OJ. Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc Natl Acad Sci USA. 2002;99:8384–8388.

    Article  PubMed  CAS  Google Scholar 

  • Russell V, de Villiers A, Sagvolden T, Lamm M, Taljaard J. Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of attention-deficit hyperactivity disorder—the spontaneously hypertensive rat. Brain Res. 1995;676:343–351.

    Article  PubMed  CAS  Google Scholar 

  • Russell VA, de Villiers AS, Sagvolden T, Lamm MC, Taljaard JJ. Methylphenidate affects striatal dopamine differently in an animal model for attention-deficit/hyperactivity disorder–the spontaneously hypertensive rat. Brain Res Bull. 2000;53:187–192.

    Article  PubMed  CAS  Google Scholar 

  • Russell VA, Sagvolden T, Johansen EB. Animal models of attention-deficit hyperactivity disorder. Behav Brain Funct. 2005;1:9.

    Article  PubMed  Google Scholar 

  • Sagvolden T. Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev. 2000;24:31–39.

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M. Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57:1239–1247.

    Article  PubMed  Google Scholar 

  • Sanudo-Pena MC, Tsou K, Delay ER, Hohman AG, Force M, Walker JM. Endogenous cannabinoids as an aversive or counter-rewarding system in the rat. Neurosci Lett. 1997;223:125–128.

    Article  PubMed  CAS  Google Scholar 

  • Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev. 2000;24:417–463.

    Article  PubMed  CAS  Google Scholar 

  • Spear LP, Brake SC. Periadolescence: age-dependent behavior and psychopharmacological responsivity in rats. Dev Psychobiol. 1983;16:83–109.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi RN, Singer G. Self-administration of delta 9-tetrahydrocannabinol by rats. Pharmacol Biochem Behav. 1979;11:737–740.

    Article  PubMed  CAS  Google Scholar 

  • Tanda G, Munzar P, Goldberg SR. Self-administration behavior is maintained by the psychoactive ingredient of marijuana in squirrel monkeys. Nat Neurosci. 2000;3:1073–1074.

    Article  PubMed  CAS  Google Scholar 

  • Taylor E. Clinical foundations of hyperactivity research. Behav Brain Res. 1998;94:11–24.

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol. 2007;12:227–462.

    Article  PubMed  CAS  Google Scholar 

  • Valjent E, Maldonado R. A behavioural model to reveal place preference to delta 9-tetrahydrocannabinol in mice. Psychopharmacology (Berl). 2000;147:436–438.

    Article  CAS  Google Scholar 

  • van Ree JM, Slangen JL, de Wied D. Intravenous self-administration of drugs in rats. J Pharmacol Exp Ther. 1978;204:547–557.

    PubMed  Google Scholar 

  • Vendruscolo LF, Izidio GS, Takahashi RN, Ramos A. Chronic methylphenidate treatment during adolescence increases anxiety-related behaviors and ethanol drinking in adult spontaneously hypertensive rats. Behav Pharmacol. 2008;19:21–27.

    Article  PubMed  CAS  Google Scholar 

  • Vendruscolo LF, Izídio GS, Takahashi RN. Drug reinforcement in a rat model of attention deficit/hyperactivity disorder – the spontaneously hypertensive rat (SHR). Current Drug Abuse Reviews. 2009, in press

  • Viggiano D, Vallone D, Ruocco LA, Sadile AG. Behavioural, pharmacological, morpho-functional molecular studies reveal a hyperfunctioning mesocortical dopamine system in an animal model of attention deficit and hyperactivity disorder. Neurosci Biobehav Rev. 2003;27:683–689.

    Article  PubMed  CAS  Google Scholar 

  • Vlachou S, Nomikos GG, Panagis G. CB1 cannabinoid receptor agonists increase intracranial self-stimulation thresholds in the rat. Psychopharmacology (Berl). 2005;179:498–508.

    Article  CAS  Google Scholar 

  • Vlachou S, Nomikos GG, Stephens DN, Panagis G. Lack of evidence for appetitive effects of Delta 9-tetrahydrocannabinol in the intracranial self-stimulation and conditioned place preference procedures in rodents. Behav Pharmacol. 2007;18:311–319.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Fujita M, Ito Y, Okada T, Kusuoka H, Nishimura T. Brain dopamine transporter in spontaneously hypertensive rats. J Nucl Med. 1997;38:470–474.

    PubMed  CAS  Google Scholar 

  • Wheal AJ, Bennett T, Randall MD, Gardiner SM. Cardiovascular effects of cannabinoids in conscious spontaneously hypertensive rats. Br J Pharmacol. 2007;152:717–724.

    Article  PubMed  CAS  Google Scholar 

  • Zangen A, Solinas M, Ikemoto S, Goldberg SR, Wise RA. Two brain sites for cannabinoid reward. J Neurosci. 2006;26:4901–4907.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Jamil Assreuy for his expert assistance in blood pressure measurements and to Dr. Attila Köfalvi and Dr. Kelly J. Clemens for helpful comments. P.P. and R.S. are supported by scholarships from CNPq, Brazil. L.F.V. had a post-doctoral fellowship from FONDATION FYSSEN, France. R.N.T. is the holder of a CNPq fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinaldo N. Takahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandolfo, P., Vendruscolo, L.F., Sordi, R. et al. Cannabinoid-induced conditioned place preference in the spontaneously hypertensive rat–an animal model of attention deficit hyperactivity disorder. Psychopharmacology 205, 319–326 (2009). https://doi.org/10.1007/s00213-009-1542-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1542-3

Keywords

Navigation