Skip to main content
Log in

Reversal of PCP-induced learning and memory deficits in the Morris’ water maze by sertindole and other antipsychotics

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rational

In humans, the N-methyl-d-aspartate antagonist phencyclidine (PCP) induces behavioral changes that mimic schizophrenia symptoms, including positive and negative symptoms as well as cognitive deficits. In clinic, the cognitive deficits are closely associated with functional outcome. Thus, improvement of cognition may have high impact on patients’ daily life.

Objective

In the present study, three second-generation antipsychotics (sertindole, risperidone, and clozapine) as well as the classical antipsychotic haloperidol were tested for the ability to reverse PCP-induced cognitive deficits in the Morris’ water maze.

Results

The second-generation antipsychotics reversed the PCP-induced cognitive impairment: sertindole (0.63–2.5 mg/kg, s.c.), risperidone (0.04 mg/kg, s.c.; whereas 0.08 and 0.16 mg/kg were without significant effect), and clozapine (0.63 mg/kg, s.c.; while 1.3 mg/kg was without significant effect). The significant effect of sertindole was observed from day 2 onwards, while clozapine and risperidone only had significant effect at day 3. The classical antipsychotic haloperidol (0.010–0.020 mg/kg, s.c.) was ineffective. No compounds influenced swimming speed at the doses used, indicating that motor function was preserved.

Conclusion

These results confirm that repeated PCP administration induces marked cognitive deficits. Further, second-generation antipsychotics like sertindole, clozapine, and risperidone within a certain, often narrow, dose range are able to reverse the impairment and thus might improve cognitive deficits in schizophrenic patients, whereas classical compounds like haloperidol lack this effect. The receptor mechanisms involved in the reversal of PCP’s disruptive effect are discussed and likely include a delicate balance between effects on dopamine D2, 5-HT2A/6, alpha-adrenergic, muscarinic, and histaminergic H1 receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdul M, Reynolds GP, Neill JC (2006) The effect of atypical and classical antipsychotics on sub-chronic PCP-induced cognitive deficits in a reversal-learning paradigm. Behav Brain Res 169:263–273

    Article  CAS  Google Scholar 

  • Addington J, Addington D (1999) Neurocognitive and social functioning in schizophrenia. Schizophr Bull 25:173–182

    PubMed  CAS  Google Scholar 

  • Arnt J (1995) Differential effects of classical and newer antipsychotics on the hypermotility induced by two dose levels of d-amphetamine. Eur J Pharmacol 283:55–62

    Article  PubMed  CAS  Google Scholar 

  • Arnt J, Skarsfeldt T (1998) Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology 18:63–101

    Article  PubMed  CAS  Google Scholar 

  • Bakshi VP, Geyer MA (1997) Phencyclidine-induced deficits in prepulse inhibition of startle are blocked by prazosin, an alpha-1 noradrenergic antagonist. J Pharmacol Exp Ther 283:666–674

    PubMed  CAS  Google Scholar 

  • Boast C, Bartolomeo AC, Morris H, Moyer JA (1999) 5HT antagonists attenuate MK801-impaired radial arm maze performance in rats. Neurobiol Learn Mem 71:259–271

    Article  PubMed  CAS  Google Scholar 

  • Brewer W, Wood S, Phillips L, Francey S, Pantelis C, Yung A, Cornblatt B, McGorry P (2006) Generalized and specific cognitive performance in clinical high-risk cohorts: a review highlighting potential vulnerability markers for psychosis. Schizophr Bull 32:538–555

    Article  PubMed  Google Scholar 

  • Chesler EJ, Salamone JD (1996) Effects of acute and repeated clozapine injections on cholinomimetic-induced vacuous jaw movements. Pharmacol Biochem Behav 54:619–624

    Article  PubMed  CAS  Google Scholar 

  • Cleghorn JM, Kaplan RD, Szechtman B, Szechtman H, Brown GM (1990) Neuroleptic drug effects on cognitive function in schizophrenia. Schizophr Res 3:211–219

    Article  PubMed  CAS  Google Scholar 

  • Cutmore TRH, Beninger RJ (1990) Do neuroleptics impair learning in schizophrenic patients. Schizophr Res 3:173–186

    Article  PubMed  CAS  Google Scholar 

  • D’Hooge R, De-Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36:60–90

    Article  PubMed  CAS  Google Scholar 

  • Dawson LA, Nguyen HQ, Li P (2001) The 5-HT(6) receptor antagonist SB-271046 selectively enhances excitatory neurotransmission in the rat frontal cortex and hippocampus. Neuropsychopharmacology 25:662–668

    Article  PubMed  CAS  Google Scholar 

  • Didriksen M (1995) Effects of antipsychotics on cognitive behaviour in rats using the delayed non-match to position paradigm. Eur J Pharmacol 281:241–250

    Article  PubMed  CAS  Google Scholar 

  • Didriksen M, Kreilgaard M, Arnt J (2006) Sertindole, in contrast to clozapine and olanzapine, does not disrupt water maze performance after acute or chronic treatment. Eur J Pharmacol 542:108–115

    Article  PubMed  CAS  Google Scholar 

  • Diehl K-H, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith S, Vidal J-M, Van De Vorstenbosch C (2001) A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 21:15–23

    Article  PubMed  CAS  Google Scholar 

  • Fitton A, Heel RC (1990) Clozapine. A review of its pharmacological properties, and therapeutic use in schizophrenia. Drugs 40:722–747

    PubMed  CAS  Google Scholar 

  • Fulton B, Goa KL (1997) Olanzapine, a review of its pharmacological properties and therapeutic efficacy in the management of schizophrenia and related psychoses. Drugs 53:281–298

    PubMed  CAS  Google Scholar 

  • Gleason SD, Shannon HE (1997) Blockade of phencyclidine-induced hyperlocomotion by olanzapine, clozapine and serotonin receptor subtype selective antagonists in mice. Psychopharmacology 129:79–84

    Article  PubMed  CAS  Google Scholar 

  • Goldberg TE, Ragland D, Torrey EF, Gold JM, Bigelow LB, Weinberger DR (1990) Neuropsychological assessment of monozygotic twins discordant for schizophrenia. Arch Gen Psychiatry 47:1066–1072

    PubMed  CAS  Google Scholar 

  • Goldberg TE, Greenberg RD, Griffin SJ, Gold JM, Kleinman JE, Pickar D, Schulz SC, Weinberger DR (1993) The effect of clozapine on cognition and psychiatric symptoms in patients with schizophrenia. Br J Psychiatry 162:43–48

    Article  PubMed  CAS  Google Scholar 

  • Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153:321–330

    PubMed  CAS  Google Scholar 

  • Green MF, Kern RS, Braff DL, Mintz J (2000) Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the “right stuff”? Schizophr Bull 26:119–136

    PubMed  CAS  Google Scholar 

  • Harvey PD, Parrella M, White L, Mohs RC, Davidson M, Davis KL (1999) Convergence of cognitive and adaptive decline in late-life schizophrenia. Schizophr Res 35:77–84

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Fujita Y, Shimizu E, Iyo M (2005) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of clozapine, but not haloperidol. Eur J Pharmacol 519:114–117

    Article  PubMed  CAS  Google Scholar 

  • Hatcher P, Brown V, Tait D, Bate S, Overend P, Hagan J, Jones D (2005) 5-HT6 receptor antagonists improve performance in an attentional set shifting task in rats. Psychopharmacology 181:253–259

    Article  PubMed  CAS  Google Scholar 

  • Hertel P, Fagerquist MV, Svensson TH (1999) Enhanced cortical dopamine output and antipsychotic-like effects of raclopride by alpha2 adrenoceptor blockade. Science 286:105–107

    Article  PubMed  CAS  Google Scholar 

  • Hirst W, Stean T, Rogers D, Sunter D, Pugh P, Moss S, Bromidge S, Riley G, Smith D, Bartlett S, Heidbreder C, Atkins A, Lacroix L, Dawson L, Foley A, Regan C, Upton N (2006) SB-399885 is a potent, selective 5-HT6 receptor antagonist with cognitive enhancing properties in aged rat water maze and novel object recognition models. Eur J Pharmacol 553:109–119

    Article  PubMed  CAS  Google Scholar 

  • Hoff AL, Faustman WO, Wieneke M, Espinoza S, Costa M, Wilkowitz O, Csernansky JG (1996) The effect of clozapine on symptom reduction, neurocognitive function, and clinical management in treatment-refractory state hospital schizophrenic inpatients. Neuropsychopharmacology 15:361–369

    Article  PubMed  CAS  Google Scholar 

  • Idris NF, Repeto P, Neill JC, Large CH (2005) Investigation of the effects of lamotrigine and clozapine in improving reversal-learning impairments induced by acute phencyclidine and d-amphetamine in the rat. Psychopharmacology 179:336–348

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    PubMed  CAS  Google Scholar 

  • Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225

    Article  PubMed  CAS  Google Scholar 

  • Kane JM, Tamminga CA (1997) Sertindole (serdolect): preclinical and clinical findings of a new atypical antipsychotic. Expert Opin Investig Drugs 6:1729–1741

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Zipursky RB, Remington G (1999) Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatry 156:286–293

    PubMed  CAS  Google Scholar 

  • Lacroix L, Dawson L, Hagan J, Heidbreder C (2004) 5-HT6 receptor antagonist SB-271046 enhances extracellular levels of monoamines in the rat medial prefrontal cortex. Synapse 51:158–164

    Article  PubMed  CAS  Google Scholar 

  • Leysen JE (2000) Receptor profile of antipsychotics. In: Ellenbroek BA, Cools AR (eds) Atypical antipsychotics. Milestones in drug therapy. Birkhäuser Verlag, Basel, pp 57–81

    Google Scholar 

  • Lis S, Krieger S, Gallhofer B, Torre P, Mittoux A, Menard F (2003) Sertindole is superior to haloperidol in cognitive performance in patients with schizophrenia: a comparative study. Eur Neuropsychopharmacol 13:S323–S324

    Article  Google Scholar 

  • Marcus M, Jardemark K, Wadenberg M, Langlois X, Hertel P, Svensson T (2005) Combined alpha2 and D2/3 receptor blockade enhances cortical glutamatergic transmission and reverses cognitive impairment in the rat. Int J Neuropsychopharmacol 8:315–327

    Article  PubMed  CAS  Google Scholar 

  • Marrs W, Kuperman J, Avedian T, Roth R, Jentsch J (2005) Alpha-2 adrenoceptor activation inhibits phencyclidine-induced deficits of spatial working memory in rats. Neuropsychopharmacology 30:1500–1510

    Article  PubMed  CAS  Google Scholar 

  • Mathé JM, Nomikos GG, Hildebrand BE, Hertel P, Svensson TH (1996) Prazosin inhibits MK-801-induced hyperlocomotion and dopamine release in the nucleus accumbens. Eur J Pharmacol 309:1–11

    Article  PubMed  Google Scholar 

  • Meltzer HY, McGurk SR (1999) The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 25:233–255

    PubMed  CAS  Google Scholar 

  • Morris RGM (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  PubMed  CAS  Google Scholar 

  • Mortimer AM (1997) Cognitive function in schizophrenia—do neuroleptics make a difference? Pharmacol Biochem Behav 56:789–795

    Article  PubMed  CAS  Google Scholar 

  • Natesan S, Reckless G, Nobrega J, Fletcher P, Kapur S (2006) Dissociation between in vivo occupancy and functional antagonism of dopamine D2 receptors: comparing aripiprazole to other antipsychotics in animal models. Neuropsychopharmacology 31:1854–1863

    Article  PubMed  CAS  Google Scholar 

  • Nuechterlein KH, Robbins TW, Einat H (2005) Distinguishing separable domains of cognition in human and animal studies: what separations are optimal for targeting interventions? A summary of recommendations from breakout group 2 at the measurement and treatment research to improve cognition in schizophrenia new approaches conference. Schizophr Bull 31:870–874

    Article  PubMed  Google Scholar 

  • Okamura N, Yanai K, Higuchi M, Sakai J, Iwata R, Ido T, Sasaki H, Watanabe T, Itoh M (2000) Functional neuroimaging of cognition impaired by a classical antihistamine, d-chlorpheniramine. Br J Pharmacol 129:115–123

    Article  PubMed  CAS  Google Scholar 

  • Podhorna J, Didriksen M (2005) Performance of male C57BL/6J mice and Wistar rats in the water maze following various schedules of phencyclidine treatment. Behav Pharmacol 16:25–34

    Article  PubMed  CAS  Google Scholar 

  • Riekkinen P Jr, Sirviö J, Aaltonen M, Riekkinen P (1990) Effects of concurrent manipulations of nicotinic and muscarinic receptors on spatial and passive avoidance learning. Pharmacol Biochem Behav 37:405–410

    Article  PubMed  CAS  Google Scholar 

  • Rodefer JS, Nguyen TN, Arnt J (2006) The effects of antipsychotics on cognitive deficits produced by subchronic PCP administration in a rodent attentional ED/ID set-shifting task. Int J Neuropsychopharmacol 9(S1):S140

    Google Scholar 

  • Sams-Dodd F (1997) Effect of novel antipsychotic drugs on phencyclidine-induced stereotyped behaviour and social isolation in the rat social interaction test. Behav Pharmacol 8:196–215

    PubMed  CAS  Google Scholar 

  • Sevy S, Davidson M (1995) The costs of cognitive impairment in schizophrenia. Schizophr Res 17:1–3

    Article  PubMed  CAS  Google Scholar 

  • Siegel S (1956) Nonparametric statistics for the behavioral sciences. McGraw-Hill, New York

    Google Scholar 

  • Skarsfeldt T (1996) Differential effect of antipsychotics on place navigation of rats in the Morris water maze. Psychopharmacology 124:126–133

    Article  PubMed  CAS  Google Scholar 

  • Tamminga CA, Mack RJ, Granneman GR, Silber CJ, Kashkin KB (1997) Sertindole in the treatment of psychosis in schizophrenia: efficacy and safety. Int Clin Psychopharmacol 12(Suppl 1):S29–S35

    Article  PubMed  Google Scholar 

  • Tashiro M, Mochizuki H, Iwabuchi K, Sakurada Y, Itoh M, Watanabe T, Yanai K (2002) Roles of histamine in regulation of arousal and cognition: functional neuroimaging of histamine H1 receptors in human brain. Life Sci 72:409–414

    Article  PubMed  CAS  Google Scholar 

  • Tollefson GD (1996) Cognitive function in schizophrenic patients. J Clin Psychiatry 57:31–39

    PubMed  Google Scholar 

  • Varty GB, Bakshi VP, Geyer MA (1999) M100907, a serotonin 5-HT2A receptor antagonist and putative antipsychotic, blocks dizocilpine-induced prepulse inhibition deficits in Sprague–Dawley and Wistar rats. Neuropsychopharmacology 20:311–321

    Article  PubMed  CAS  Google Scholar 

  • Velling DI, Mahurin RK, Diamond PL, Hazleton BC, Eckert SL, Miller AL (1997) The functional significance of symptomatology and cognitive function in schizophrenia. Schizophr Res 25:21–31

    Article  Google Scholar 

  • Weinberger DR, Gallhofer B (1997) Cognitive function in schizophrenia. Int Clin Psychopharmacol 12:S29–S36

    Article  PubMed  Google Scholar 

  • Weiner DM, Meltzer HY, Veinbergs I, Donohue EM, Spalding TA, Smith TT, Mohell N, Harvey SC, Lameh J, Nash N, Vanover KE, Olsson R, Jayathilake K, Lee M, Levey AI, Hacksell U, Burstein ES, Davis RE, Brann MR (2004) The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine. Psychopharmacology 177:207–216

    Article  PubMed  CAS  Google Scholar 

  • Woolley ML, Marsden CA, Fone KCF (2004) 5-HT(6) receptors. Curr Drug Targets CNS Neurol Dis 3:59–79

    Article  CAS  Google Scholar 

  • Zorn SH, Jones SB, Ward KM, Liston DR (1994) Clozapine is a potent and selective muscarinic M4 receptor agonist. Eur J Pharmacol 269:R1–R2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Birgitte Bjørkenberg, Marlene Quvang Jørgensen, and Maj-Britt Filsø Mathiassen for their excellent technical assistance in conducting these experiments.

All experiments were conducted in accordance with the Danish animal protection law.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Didriksen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Didriksen, M., Skarsfeldt, T. & Arnt, J. Reversal of PCP-induced learning and memory deficits in the Morris’ water maze by sertindole and other antipsychotics. Psychopharmacology 193, 225–233 (2007). https://doi.org/10.1007/s00213-007-0774-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0774-3

Keywords

Navigation