Skip to main content
Log in

Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background and objectives

The idea that nucleus accumbens (Acb) dopamine transmission contributes to the neural mediation of reward, at least in a general sense, has achieved wide acceptance. Nevertheless, debate remains over the precise nature of dopamine’s role in reward and even over the nature of reward itself. In the present article, evidence is reviewed from studies of food intake, feeding microstructure, instrumental responding for food reinforcement, and dopamine efflux associated with feeding, which suggests that reward processing in the Acb is best understood as an interaction among distinct processes coded by discrete neurotransmitter systems.

Results

In agreement with several theories of Acb dopamine function, it is proposed here that allocation of motor effort in seeking food or food-associated conditioned stimuli can be dissociated from computations relevant to the hedonic evaluation of food during the consummatory act. The former appears to depend upon Acb dopamine transmission and the latter upon striatal opioid peptide release. Moreover, dopamine transmission may play a role in ‘stamping in’ associations between motor acts and goal attainment and perhaps also neural representations corresponding to rewarding outcomes. Finally, evidence is reviewed that amino acid transmission specifically in the Acb shell acts as a central ‘circuit breaker’ to flexibly enable or terminate the consummatory act, via descending connections to hypothalamic feeding control systems.

Conclusions

The heuristic framework outlined above may help explain why dopamine-compromising manipulations that strongly diminish instrumental goal-seeking behaviors leave consummatory activity relatively unaffected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For the purposes of this review, we will use the terms ‘appetitive’ and ‘consummatory’ to distinguish behaviors leading up to goal attainment from those that involve actual commerce with the goal object (Craig 1918). Unless otherwise specified, the term ‘appetitive phase’ is meant, in a broad sense, to include specific preparatory behaviors, instrumental goal-seeking behaviors, as well as the spontaneous investigatory responses characteristic of motivational arousal. The term ‘consummatory phase’ is used in the spirit of Craig’s “phase II” of a motivated behavior “cycle” in which the “reception of the appeted stimulus” is followed by a “consummatory reaction in response to that stimulus” (see Craig 1918, p 101). The appetitive/consummatory distinction can refer to the temporal organization of behavior in which the consummatory reaction is that which terminates the behavioral sequence but can also refer to qualitative differences between the flexible behaviors leading up to goal attainment vs the relatively stereotyped action patterns observed during commerce with the goal (Craig 1918). Our usage conforms more to the latter theme. Hence, we use ‘consummatory phase’ to designate the period in which repetitive, relatively inflexible motor acts occur during actual contact with the food; chewing, licking, swallowing, etc. In the context of ingestive behavior (which involves actual consumption), the term ‘consumatory’ is sometimes preferred to ‘consummatory’ (see Smith 1995), but we will use the latter term simply to imply the generalizability of our proposed framework to other motivated behaviors, such as sexual behavior.

References

  • Aberman JE, Salamone JD (1999) Nucleus accumbens dopamine depletions make rats more sensitive to high ratio requirements but do not impair primary food reinforcement. Neuroscience 92:545–552

    PubMed  CAS  Google Scholar 

  • Aberman JE, Ward SJ, Salamone JD (1998) Effects of dopamine antagonists and accumbens dopamine depletions on time-constrained progressive-ratio performance. Pharmacol Biochem Behav 61:341–348

    PubMed  CAS  Google Scholar 

  • Ahn S, Phillips AG (2002) Modulation by central and basolateral amygdalar nuclei of dopaminergic correlates of feeding to satiety in the rat nucleus accumbens and medial prefrontal cortex. J Neurosci 22:10958–10965

    PubMed  CAS  Google Scholar 

  • Anden NE, Carlsson A, Dahlstroem A, Fuxe K, Hillarp NA, Larsson K (1964) Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci 3:523–530

    PubMed  CAS  Google Scholar 

  • Arbuthnott GW, Ingham CA, Wickens JR (1998) Modulation by dopamine of rat corticostriatal input. Adv Pharmacol 42:733–736

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep–waking cycle. J Neurosci 1:876–886

    PubMed  CAS  Google Scholar 

  • Bakshi VP, Kelley AE (1991a) Dopaminergic regulation of feeding behavior: I. Differential effects of haloperidol microinfusion into three striatal subregions. Psychobiology 19:223–232

    CAS  Google Scholar 

  • Bakshi VP, Kelley AE (1991b) Dopaminergic regulation of feeding behavior: II. Differential effects of amphetamine microinfusion into three striatal subregions. Psychobiology 19:233–242

    CAS  Google Scholar 

  • Bakshi VP, Kelley AE (1993a) Feeding induced by opioid stimulation of the ventral striatum: role of opiate receptor subtypes. J Pharmacol Exp Ther 265:1253–1260

    PubMed  CAS  Google Scholar 

  • Bakshi VP, Kelley AE (1993b) Striatal regulation of morphine-induced hyperphagia: an anatomical mapping study. Psychopharmacology (Berl) 111:207–214

    CAS  Google Scholar 

  • Baldo BA, Sadeghian K, Basso AM, Kelley AE (2002) Effects of selective dopamine D1 or D2 receptor blockade within nucleus accumbens subregions on ingestive behavior and associated motor activity. Behav Brain Res 137:165–177

    PubMed  CAS  Google Scholar 

  • Baldo BA, Gual-Bonilla L, Sijapati K, Daniel RA, Landry CF, Kelley AE (2004) Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment. Eur J Neurosci 19:376–386

    PubMed  Google Scholar 

  • Baldwin AE, Holahan MR, Sadeghian K, Kelley AE (2000) N-methyl-d-aspartate receptor-dependent plasticity within a distributed corticostriatal network mediates appetitive instrumental learning. Behav Neurosci 114:84–98

    PubMed  CAS  Google Scholar 

  • Barbano MF, Cador M (2006) Differential regulation of the consummatory, motivational and anticipatory aspects of feeding behavior by dopaminergic and opioidergic drugs. Neuropsychopharmacology 31:1371–1381

    PubMed  CAS  Google Scholar 

  • Basso AM, Kelley AE (1999) Feeding induced by GABA(A) receptor stimulation within the nucleus accumbens shell: regional mapping and characterization of macronutrient and taste preference. Behav Neurosci 113:324–336

    PubMed  CAS  Google Scholar 

  • Bassareo V, Di Chiara G (1999) Differential responsiveness of dopamine transmission to food-stimuli in nucleus accumbens shell/core compartments. Neuroscience 89:637–641

    PubMed  CAS  Google Scholar 

  • Bassareo V, De Luca MA, Di Chiara G (2002) Differential expression of motivational stimulus properties by dopamine in nucleus accumbens shell versus core and prefrontal cortex. J Neurosci 22:4709–4719

    PubMed  CAS  Google Scholar 

  • Beninger RJ, Miller R (1998) Dopamine D1-like receptors and reward-related incentive learning. Neurosci Biobehav Rev 22:335–345

    PubMed  CAS  Google Scholar 

  • Berke JD, Hyman SE (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25:515–532

    PubMed  CAS  Google Scholar 

  • Berridge KC (2005) Espresso reward learning, hold the dopamine: theoretical comment on Robinson et al (2005) Behav Neurosci 119:336–341

    PubMed  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28:309–369

    PubMed  CAS  Google Scholar 

  • Berridge KC, Venier IL, Robinson TE (1989) Taste reactivity analysis of 6-hydroxydopamine-induced aphagia: implications for arousal and anhedonia hypotheses of dopamine function. Behav Neurosci 103:36–45

    PubMed  CAS  Google Scholar 

  • Bindra D (1974) A motivational view of learning, performance, and behavior modification. Psychol Rev 81:199–213

    PubMed  CAS  Google Scholar 

  • Blackburn JR, Phillips AG, Fibiger HC (1987) Dopamine and preparatory behavior: I. Effects of pimozide. Behav Neurosci 101:352–360

    PubMed  CAS  Google Scholar 

  • Blackburn JR, Phillips AG, Jakubovic A, Fibiger HC (1989) Dopamine and preparatory behavior: II. A neurochemical analysis. Behav Neurosci 103:15–23

    PubMed  CAS  Google Scholar 

  • Blanchard RJ, Blanchard DC (1989) Antipredator defensive behaviors in a visible burrow system. J Comp Psychol 103:70–82

    PubMed  CAS  Google Scholar 

  • Blundell JE, Herberg LJ (1973) Effectiveness of lateral hypothalamic stimulation, arousal, and food deprivation in the initiation of hoarding behaviour in naive rats. Physiol Behav 10:763–767

    PubMed  CAS  Google Scholar 

  • Bodnar RJ, Lamonte N, Israel Y, Kandov Y, Ackerman TF, Khaimova E (2005) Reciprocal opioid–opioid interactions between the ventral tegmental area and nucleus accumbens regions in mediating mu agonist-induced feeding in rats. Peptides 26:621–629

    PubMed  CAS  Google Scholar 

  • Bradley MM, Codispoti M, Lang PJ (2006) A multi-process account of startle modulation during affective perception. Psychophysiology 43:486–497

    PubMed  Google Scholar 

  • Brody S, Rau H, Kohler F, Schupp H, Lutzenberger W, Birbaumer N (1994) Slow cortical potential biofeedback and the startle reflex. Biofeedback Self Regul 19:1–11

    PubMed  CAS  Google Scholar 

  • Buchwald NA, Horvath FE, Wyers EJ, Wakefield C (1964) Electroencephalogram rhythms correlated with milk reinforcement in cats. Nature 201:830–831

    PubMed  CAS  Google Scholar 

  • Burns LH, Everitt BJ, Kelley AE, Robbins TW (1994) Glutamate–dopamine interactions in the ventral striatum: role in locomotor activity and responding with conditioned reinforcement. Psychopharmacology (Berl) 115:516–528

    CAS  Google Scholar 

  • Carlsson A, Dahlstroem A, Fuxe K, Lindqvist M (1965) Histochemical and biochemical detection of monoamine release from brain neurons. Life Sci 4:809–816

    PubMed  CAS  Google Scholar 

  • Cervantes M, De La Torre L, Beyer C (1975) Analysis of various factors involved in EEG synchronization during milk drinking in the cat. Brain Res 91:89–98

    PubMed  CAS  Google Scholar 

  • Clemente DC, Sterman MB, Wyrwicka W (1964) Post-reinforcement EEG synchronization during alimentary behavior. Electroencephalogr Clin Neurophysiol 16:355–365

    PubMed  CAS  Google Scholar 

  • Correa M, Carlson BB, Wisniecki A, Salamone JD (2002) Nucleus accumbens dopamine and work requirements on interval schedules. Behav Brain Res 137:179–187

    PubMed  CAS  Google Scholar 

  • Cousins MS, Wei W, Salamone JD (1994) Pharmacological characterization of performance on a concurrent lever pressing/feeding choice procedure: effects of dopamine antagonist, cholinomimetic, sedative and stimulant drugs. Psychopharmacology (Berl) 116:529–537

    CAS  Google Scholar 

  • Craig W (1918) Appetites and aversions as constituents of instincts. Biol Bull 34:91–107

    Google Scholar 

  • Cunningham ST, Kelley AE (1992) Opiate infusion into nucleus accumbens: contrasting effects on motor activity and responding for conditioned reward. Brain Res 588:104–114

    PubMed  CAS  Google Scholar 

  • Delfs JM, Schreiber L, Kelley AE (1990) Microinjection of cocaine into the nucleus accumbens elicits locomotor activation in the rat. J Neurosci 10:303–310

    PubMed  CAS  Google Scholar 

  • Dukas R (2002) Behavioural and ecological consequences of limited attention. Philos Trans R Soc Lond B Biol Sci 357:1539–1547

    PubMed  Google Scholar 

  • Ervin GN, Fink JS, Young RC, Smith GP (1977) Different behavioral responses to l-DOPA after anterolateral or posterolateral hypothalamic injections of 6-hydroxydopamine. Brain Res 132:507–520

    PubMed  CAS  Google Scholar 

  • Ettenberg A (1989) Dopamine, neuroleptics and reinforced behavior. Neurosci Biobehav Rev 13:105–111

    PubMed  CAS  Google Scholar 

  • Ettenberg A, Camp CH (1986a) Haloperidol induces a partial reinforcement extinction effect in rats: implications for a dopamine involvement in food reward. Pharmacol Biochem Behav 25:813–821

    PubMed  CAS  Google Scholar 

  • Ettenberg A, Camp CH (1986b) A partial reinforcement extinction effect in water-reinforced rats intermittently treated with haloperidol. Pharmacol Biochem Behav 25:1231–1235

    PubMed  CAS  Google Scholar 

  • Evans KR, Vaccarino FJ (1990) Amphetamine- and morphine-induced feeding: evidence for involvement of reward mechanisms. Neurosci Biobehav Rev 14:9–22

    PubMed  CAS  Google Scholar 

  • Everitt BJ (1990) Sexual motivation: a neural and behavioural analysis of the mechanisms underlying appetitive and copulatory responses of male rats. Neurosci Biobehav Rev 14:217–232

    PubMed  CAS  Google Scholar 

  • Fibiger HC, Zis AP, McGeer EG (1973) Feeding and drinking deficits after 6-hydroxydopamine administration in the rat: similarities to the lateral hypothalamic syndrome. Brain Res 55:135–148

    PubMed  CAS  Google Scholar 

  • Fibiger HC, Carter DA, Phillips AG (1976) Decreased intracranial self-stimulation after neuroleptics or 6-hydroxydopamine: evidence for mediation by motor deficits rather than by reduced reward. Psychopharmacology (Berl) 47:21–27

    CAS  Google Scholar 

  • Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299:1898–1902

    PubMed  CAS  Google Scholar 

  • Fouriezos G, Wise RA (1976) Pimozide-induced extinction of intracranial self-stimulation: response patterns rule out motor or performance deficits. Brain Res 103:377–380

    PubMed  CAS  Google Scholar 

  • Fouriezos G, Hansson P, Wise RA (1978) Neuroleptic-induced attenuation of brain stimulation reward in rats. J Comp Physiol Psychol 92:661–671

    PubMed  CAS  Google Scholar 

  • Fowler SC, Das S (1994) Haloperidol-induced decrements in force and duration of rats’ tongue movements during licking are attenuated by concomitant anticholinergic treatment. Pharmacol Biochem Behav 49:813–817

    PubMed  CAS  Google Scholar 

  • Fray PJ, Sahakian BJ, Robbins TW, Koob GF, Iversen SD (1980) An observational method for quantifying the behavioural effects of dopamine agonists: contrasting effects of d-amphetamine and apomorphine. Psychopharmacology (Berl) 69:253–259

    CAS  Google Scholar 

  • Fuxe K, Hokfelt T, Olson L, Ungerstedt U (1977) Central monoaminergic pathways with emphasis on their relation to the so called ‘extrapyramidal motor system’. Pharmacol Ther B 3:169–210

    PubMed  CAS  Google Scholar 

  • Geyer MA, Russo PV, Segal DS, Kuczenski R (1987) Effects of apomorphine and amphetamine on patterns of locomotor and investigatory behavior in rats. Pharmacol Biochem Behav 28:393–399

    PubMed  CAS  Google Scholar 

  • Glickman SE, Schiff BB (1967) A biological theory of reinforcement. Psychol Rev 74:81–109

    PubMed  CAS  Google Scholar 

  • Gramling SE, Fowler SC, Collins KR (1984) Some effects of pimozide on nondeprived rats licking sucrose solutions in an anhedonia paradigm. Pharmacol Biochem Behav 21:617–624

    Article  PubMed  CAS  Google Scholar 

  • Hackett JT, Marczynski TJ (1969) Postreinforcement electrocortical synchronization and enhancement of cortical photic evoked potentials during instrumentally conditioned appetitive behavior in the cat. Brain Res 15:447–464

    PubMed  CAS  Google Scholar 

  • Hajnal A, Smith GP, Norgren R (2004) Oral sucrose stimulation increases accumbens dopamine in the rat. Am J Physiol Regul Integr Comp Physiol 286:R31–R37

    PubMed  CAS  Google Scholar 

  • Hanlon EC, Baldo BA, Sadeghian K, Kelley AE (2004) Increases in food intake or food-seeking behavior induced by GABAergic, opioid, or dopaminergic stimulation of the nucleus accumbens: is it hunger? Psychopharmacology (Berl) 172:241–247

    CAS  Google Scholar 

  • Hernandez L, Hoebel BG (1988) Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens. Physiol Behav 44:599–606

    PubMed  CAS  Google Scholar 

  • Hernandez PJ, Andrzejewski ME, Sadeghian K, Panksepp JB, Kelley AE (2005) AMPA/kainate, NMDA, and dopamine D1 receptor function in the nucleus accumbens core: a context-limited role in the encoding and consolidation of instrumental memory. Learn Mem 12:285–295

    PubMed  Google Scholar 

  • Hillarp NA, Fuxe K, Dahlstrom A (1966) Demonstration and mapping of central neurons containing dopamine, noradrenaline, and 5-hydroxytryptamine and their reactions to psychopharmaca. Pharmacol Rev 18:727–741

    PubMed  CAS  Google Scholar 

  • Hoebel BG, Teitelbaum P (1962) Hypothalamic control of feeding and self-stimulation. Science 135:375–377

    PubMed  CAS  Google Scholar 

  • Hollerman JR, Schultz W (1998) Dopamine neurons report an error in the temporal prediction of reward during learning. Nat Neurosci 1:304–309

    PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1966) Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev 18:925–964

    PubMed  CAS  Google Scholar 

  • Horvitz JC (2002) Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum. Behav Brain Res 137:65–74

    PubMed  CAS  Google Scholar 

  • Horvitz JC, Ettenberg A (1988) Haloperidol blocks the response-reinstating effects of food reward: a methodology for separating neuroleptic effects on reinforcement and motor processes. Pharmacol Biochem Behav 31:861–865

    PubMed  CAS  Google Scholar 

  • Ikemoto S, Panksepp J (1996) Dissociations between appetitive and consummatory responses by pharmacological manipulations of reward-relevant brain regions. Behav Neurosci 110:331–345

    PubMed  CAS  Google Scholar 

  • Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Brain Res Rev 31:6–41

    PubMed  CAS  Google Scholar 

  • Imperato A, Angelucci L, Casolini P, Zocchi A, Puglisi-Allegra S (1992) Repeated stressful experiences differently affect limbic dopamine release during and following stress. Brain Res 577:194–199

    PubMed  CAS  Google Scholar 

  • Jacobs BL, Martin-Cora FJ, Fornal CA (2002) Activity of medullary serotonergic neurons in freely moving animals. Brain Res Brain Res Rev 40:45–52

    PubMed  CAS  Google Scholar 

  • Jicha GA, Salamone JD (1991) Vacuous jaw movements and feeding deficits in rats with ventrolateral striatal dopamine depletion: possible relation to Parkinsonian symptoms. J Neurosci 11:3822–3829

    PubMed  CAS  Google Scholar 

  • Jones DL, Mogenson GJ (1979) Oral motor performance following central dopamine receptor blockade. Eur J Pharmacol 59:11–21

    PubMed  CAS  Google Scholar 

  • Kandov Y, Israel Y, Kest A, Dostova I, Verasammy J, Bernal SY, Kasselman L, Bodnar RJ (2006) GABA receptor subtype antagonists in the nucleus accumbens shell and ventral tegmental area differentially alter feeding responses induced by deprivation, glucoprivation and lipoprivation in rats. Brain Res 1082:86–97

    PubMed  CAS  Google Scholar 

  • Kelley AE (2004) Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 44:161–179

    PubMed  CAS  Google Scholar 

  • Kelley AE, Delfs JM (1991) Dopamine and conditioned reinforcement. I. Differential effects of amphetamine microinjections into striatal subregions. Psychopharmacology (Berl) 103:187–196

    CAS  Google Scholar 

  • Kelley AE, Stinus L (1985) Disappearance of hoarding behavior after 6-hydroxydopamine lesions of the mesolimbic dopamine neurons and its reinstatement with l-dopa. Behav Neurosci 99:531–545

    PubMed  CAS  Google Scholar 

  • Kelley AE, Swanson CJ (1997) Feeding induced by blockade of AMPA and kainate receptors within the ventral striatum: a microinfusion mapping study. Behav Brain Res 89:107–113

    PubMed  CAS  Google Scholar 

  • Kelley AE, Winnock M, Stinus L (1986) Amphetamine, apomorphine and investigatory behavior in the rat: analysis of the structure and pattern of responses. Psychopharmacology (Berl) 88:66–74

    CAS  Google Scholar 

  • Kelley AE, Gauthier AM, Lang CG (1989) Amphetamine microinjections into distinct striatal subregions cause dissociable effects on motor and ingestive behavior. Behav Brain Res 35:27–39

    PubMed  CAS  Google Scholar 

  • Kelley AE, Bless EP, Swanson CJ (1996) Investigation of the effects of opiate antagonists infused into the nucleus accumbens on feeding and sucrose drinking in rats. J Pharmacol Exp Ther 278:1499–1507

    PubMed  CAS  Google Scholar 

  • Kelley AE, Smith-Roe SL, Holahan MR (1997) Response-reinforcement learning is dependent on N-methyl-d-aspartate receptor activation in the nucleus accumbens core. Proc Natl Acad Sci USA 94:12174–12179

    PubMed  CAS  Google Scholar 

  • Kelley AE, Baldo BA, Pratt WE (2005a) A proposed hypothalamic–thalamic–striatal axis for the integration of energy balance, arousal, and food reward. J Comp Neurol 493:72–85

    PubMed  CAS  Google Scholar 

  • Kelley AE, Baldo BA, Pratt WE, Will MJ (2005b) Corticostriatal–hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 86:773–795

    PubMed  CAS  Google Scholar 

  • Kerr JN, Wickens JR (2001) Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J Neurophysiol 85:117–124

    PubMed  CAS  Google Scholar 

  • Kiyatkin EA, Gratton A (1994) Electrochemical monitoring of extracellular dopamine in nucleus accumbens of rats lever-pressing for food. Brain Res 652:225–234

    PubMed  CAS  Google Scholar 

  • Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24:97–129

    PubMed  CAS  Google Scholar 

  • Koob GF, Riley SJ, Smith SC, Robbins TW (1978) Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. J Comp Physiol Psychol 92:917–927

    PubMed  CAS  Google Scholar 

  • Krebs H, Macht M, Weyers P, Weijers HG, Janke W (1996) Effects of stressful noise on eating and non-eating behavior in rats. Appetite 26:193–202

    PubMed  CAS  Google Scholar 

  • Krebs H, Weyers P, Macht M, Weijers HG, Janke W (1997) Scanning behavior of rats during eating under stressful noise. Physiol Behav 62:151–154

    PubMed  CAS  Google Scholar 

  • Lehericy S, Benali H, Van de Moortele PF, Pelegrini-Issac M, Waechter T, Ugurbil K, Doyon J (2005) Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci USA 102:12566–12571

    PubMed  CAS  Google Scholar 

  • Liebman JM, Butcher LL (1973) Effects on self-stimulation behavior of drugs influencing dopaminergic neurotransmission mechanisms. Naunyn Schmiedebergs Arch Pharmacol 277:305–318

    PubMed  CAS  Google Scholar 

  • Lippa AS, Antelman SM, Fisher AE, Canfield DR (1973) Neurochemical mediation of reward: a significant role for dopamine? Pharmacol Biochem Behav 1:23–28

    PubMed  CAS  Google Scholar 

  • Lyon M, Robbins TW (1975) The action of central nervous system drugs: a general theory concerning amphetamine effects. In: Essman WB, Valzelli L (eds) Current developments in psychopharmacology. Spectrum, New York, pp 79–163

    Google Scholar 

  • Maldonado-Irizarry CS, Swanson CJ, Kelley AE (1995) Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus. J Neurosci 15:6779–6788

    PubMed  CAS  Google Scholar 

  • Margules DL, Olds J (1962) Identical “feeding” and “rewarding” systems in the lateral hypothalamus of rats. Science 135:374–375

    PubMed  CAS  Google Scholar 

  • Marshall JF, Richardson JS, Teitelbaum P (1974) Nigrostriatal bundle damage and the lateral hypothalamic syndrome. J Comp Physiol Psychol 87:808–830

    PubMed  CAS  Google Scholar 

  • McCullough LD, Salamone JD (1992) Involvement of nucleus accumbens dopamine in the motor activity induced by periodic food presentation: a microdialysis and behavioral study. Brain Res 592:29–36

    PubMed  CAS  Google Scholar 

  • McFarland K, Ettenberg A (1998) Haloperidol does not affect motivational processes in an operant runway model of food-seeking behavior. Behav Neurosci 112:630–635

    PubMed  CAS  Google Scholar 

  • Milner PM (1989) The discovery of self-stimulation and other stories. Neurosci Biobehav Rev 13:61–67

    PubMed  CAS  Google Scholar 

  • Mingote S, Weber SM, Ishiwari K, Correa M, Salamone JD (2005) Ratio and time requirements on operant schedules: effort-related effects of nucleus accumbens dopamine depletions. Eur J Neurosci 21:1749–1757

    Article  PubMed  Google Scholar 

  • Mirenowicz J, Schultz W (1994) Importance of unpredictability for reward responses in primate dopamine neurons. J Neurophysiol 72:1024–1027

    PubMed  CAS  Google Scholar 

  • Mogenson GJ (1969) General and specific reinforcement systems for drinking behavior. Ann N Y Acad Sci 157:779–797

    PubMed  CAS  Google Scholar 

  • Mucha RF, Iversen SD (1986) Increased food intake after opioid microinjections into nucleus accumbens and ventral tegmental area of rat. Brain Res 397:214–224

    PubMed  CAS  Google Scholar 

  • Neill DB, Justice JBJ (1981) An hypothesis for a behavioral function of dopaminergic transmission in nucleus accumbens. In: Chronister RB, DeFrance JF (eds) The neurobiology of the nucleus accumbens. Haer Institute, Brunswick, pp 343–350

    Google Scholar 

  • Nicola SM, Surmeier J, Malenka RC (2000) Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 23:185–215

    PubMed  CAS  Google Scholar 

  • Nowend KL, Arizzi M, Carlson BB, Salamone JD (2001) D1 or D2 antagonism in nucleus accumbens core or dorsomedial shell suppresses lever pressing for food but leads to compensatory increases in chow consumption. Pharmacol Biochem Behav 69:373–382

    PubMed  CAS  Google Scholar 

  • O’Donnell P (2003) Dopamine gating of forebrain neural ensembles. Eur J Neurosci 17:429–435

    PubMed  Google Scholar 

  • Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47:419–427

    PubMed  CAS  Google Scholar 

  • Olds J, Allan WS, Briese E (1971) Differentiation of hypothalamic drive and reward centers. Am J Physiol 221:368–375

    PubMed  CAS  Google Scholar 

  • Onuki Y, Makino J (2005) Food-carrying behavior increased under risk-approaching signal in rats (Rattus norvegicus). Physiol Behav 84:141–145

    PubMed  CAS  Google Scholar 

  • Paulus MP, Geyer MA, Gold LH, Mandell AJ (1990) Application of entropy measures derived from the ergodic theory of dynamical systems to rat locomotor behavior. Proc Natl Acad Sci USA 87:723–727

    PubMed  CAS  Google Scholar 

  • Paulus MP, Callaway CW, Geyer MA (1993) Quantitative assessment of the microstructure of rat behavior: II. Distinctive effects of dopamine releasers and uptake inhibitors. Psychopharmacology (Berl) 113:187–198

    CAS  Google Scholar 

  • Pecina S, Berridge KC (2000) Opioid site in nucleus accumbens shell mediates eating and hedonic ‘liking’ for food: map based on microinjection Fos plumes. Brain Res 863:71–86

    PubMed  CAS  Google Scholar 

  • Pecina S, Berridge KC (2005) Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? J Neurosci 25:11777–11786

    PubMed  CAS  Google Scholar 

  • Pfaus JG, Phillips AG (1991) Role of dopamine in anticipatory and consummatory aspects of sexual behavior in the male rat. Behav Neurosci 105:727–743

    PubMed  CAS  Google Scholar 

  • Phillips AG, Atkinson LJ, Blackburn JR, Blaha CD (1993) Increased extracellular dopamine in the nucleus accumbens of the rat elicited by a conditional stimulus for food: an electrochemical study. Can J Physiol Pharmacol 71:387–393

    PubMed  CAS  Google Scholar 

  • Phillips GD, Robbins TW, Everitt BJ (1994) Mesoaccumbens dopamine–opiate interactions in the control over behaviour by a conditioned reinforcer. Psychopharmacology (Berl) 114:345–359

    CAS  Google Scholar 

  • Pijnenburg AJ, Honig WM, Van der Heyden JA, Van Rossum JM (1976) Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity. Eur J Pharmacol 35:45–58

    PubMed  CAS  Google Scholar 

  • Radhakishun FS, van Ree JM, Westerink BH (1988) Scheduled eating increases dopamine release in the nucleus accumbens of food-deprived rats as assessed with on-line brain dialysis. Neurosci Lett 85:351–356

    PubMed  CAS  Google Scholar 

  • Reynolds SM, Berridge KC (2001) Fear and feeding in the nucleus accumbens shell: rostrocaudal segregation of GABA-elicited defensive behavior versus eating behavior. J Neurosci 21:3261–3270

    PubMed  CAS  Google Scholar 

  • Reynolds SM, Berridge KC (2002) Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste “liking”/“disliking” reactions, place preference/avoidance, and fear. J Neurosci 22:7308–7320

    PubMed  CAS  Google Scholar 

  • Richardson NR, Gratton A (1996) Behavior-relevant changes in nucleus accumbens dopamine transmission elicited by food reinforcement: an electrochemical study in rat. J Neurosci 16:8160–8169

    PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ (2002) Limbic–striatal memory systems and drug addiction. Neurobiol Learn Mem 78:625–636

    PubMed  CAS  Google Scholar 

  • Robinson S, Sandstrom SM, Denenberg VH, Palmiter RD (2005) Distinguishing whether dopamine regulates liking, wanting, and/or learning about rewards. Behav Neurosci 119:5–15

    PubMed  CAS  Google Scholar 

  • Roitman MF, Stuber GD, Phillips PE, Wightman RM, Carelli RM (2004) Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24:1265–1271

    PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M (2002) Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav Brain Res 137:3–25

    PubMed  CAS  Google Scholar 

  • Salamone JD, Mahan K, Rogers S (1993) Ventrolateral striatal dopamine depletions impair feeding and food handling in rats. Pharmacol Biochem Behav 44:605–610

    PubMed  CAS  Google Scholar 

  • Salamone JD, Cousins MS, Bucher S (1994a) Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res 65:221–229

    PubMed  CAS  Google Scholar 

  • Salamone JD, Cousins MS, McCullough LD, Carriero DL, Berkowitz RJ (1994b) Nucleus accumbens dopamine release increases during instrumental lever pressing for food but not free food consumption. Pharmacol Biochem Behav 49:25–31

    PubMed  CAS  Google Scholar 

  • Salamone JD, Cousins MS, Snyder BJ (1997) Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neurosci Biobehav Rev 21:341–359

    PubMed  CAS  Google Scholar 

  • Salamone JD, Wisniecki A, Carlson BB, Correa M (2001) Nucleus accumbens dopamine depletions make animals highly sensitive to high fixed ratio requirements but do not impair primary food reinforcement. Neuroscience 105:863–870

    PubMed  CAS  Google Scholar 

  • Schmitt B, Marshall L, Nitsche M, Hallschmid M, Eulitz C, Born J (2000) Slow cortical DC-potential responses to sweet and bitter tastes in humans. Physiol Behav 71:581–587

    PubMed  CAS  Google Scholar 

  • Schneider LH, Davis JD, Watson CA, Smith GP (1990) Similar effect of raclopride and reduced sucrose concentration on the microstructure of sucrose sham feeding. Eur J Pharmacol 186:61–70

    PubMed  CAS  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    PubMed  CAS  Google Scholar 

  • Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13:900–913

    PubMed  CAS  Google Scholar 

  • Schupp HT, Lutzenberger W, Rau H, Birbaumer N (1994) Positive shifts of event-related potentials: a state of cortical disfacilitation as reflected by the startle reflex probe. Electroencephalogr Clin Neurophysiol 90:135–144

    PubMed  CAS  Google Scholar 

  • Schwartzbaum JS, Kreinick CJ, Mello WF (1972) Cortical evoked potentials and synchronization of electrocortical activity during consummatory behavior in rats. Brain Res 36:171–182

    PubMed  CAS  Google Scholar 

  • Smith GP (1995) Dopamine and food reward. Prog Psychobiol Physiol Psychol 16:83–144

    Google Scholar 

  • Smith GP (2004) Accumbens dopamine mediates the rewarding effect of orosensory stimulation by sucrose. Appetite 43:11–13

    PubMed  CAS  Google Scholar 

  • Smith-Roe SL, Kelley AE (2000) Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning. J Neurosci 20:7737–7742

    PubMed  CAS  Google Scholar 

  • Stellar E (1954) The physiology of motivation. Psychol Rev 61:5–22

    PubMed  CAS  Google Scholar 

  • Stephan FK, Valenstein ES, Zucker I (1971) Copulation and eating during electrical stimulation of the rat hypothalamus. Physiol Behav 7:587–593

    PubMed  CAS  Google Scholar 

  • Sterman MB, Wyrwicka W (1967) EEG correlates of sleep: evidence for separate forebrain substrates. Brain Res 6:143–163

    PubMed  CAS  Google Scholar 

  • Stratford TR, Kelley AE (1997) GABA in the nucleus accumbens shell participates in the central regulation of feeding behavior. J Neurosci 17:4434–4440

    PubMed  CAS  Google Scholar 

  • Stratford TR, Kelley AE (1999) Evidence of a functional relationship between the nucleus accumbens shell and lateral hypothalamus subserving the control of feeding behavior. J Neurosci 19:11040–11048

    PubMed  CAS  Google Scholar 

  • Stratford TR, Swanson CJ, Kelley A (1998) Specific changes in food intake elicited by blockade or activation of glutamate receptors in the nucleus accumbens shell. Behav Brain Res 93:43–50

    PubMed  CAS  Google Scholar 

  • Swanson LW (2000) Cerebral hemisphere regulation of motivated behavior. Brain Res 886:113–164

    PubMed  CAS  Google Scholar 

  • Taha SA, Fields HL (2005) Encoding of palatability and appetitive behaviors by distinct neuronal populations in the nucleus accumbens. J Neurosci 25:1193–1202

    PubMed  CAS  Google Scholar 

  • Tidey JW, Miczek KA (1996) Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain Res 721:140–149

    PubMed  CAS  Google Scholar 

  • Toates F (1986) Motivational systems. Cambridge, MA, Cambridge University Press

  • Tombaugh TN, Tombaugh J, Anisman H (1979) Effects of dopamine receptor blockade on alimentary behaviors: home cage food consumption, magazine training, operant acquisition, and performance. Psychopharmacology (Berl) 66:219–225

    CAS  Google Scholar 

  • Tyrka A, Smith GP (1991) Potency of SCH 23390 for decreasing sucrose intake in rat pups depends on mode of ingestion. Pharmacol Biochem Behav 39:955–961

    PubMed  CAS  Google Scholar 

  • Tyrka A, Gayle C, Smith GP (1992) Raclopride decreases sucrose intake of rat pups in independent ingestion tests. Pharmacol Biochem Behav 43:863–869

    PubMed  CAS  Google Scholar 

  • Ungerstedt U (1970) Is interruption of the nigro-striatal dopamine system producing the “lateral hypothalamus syndrome”? Acta Physiol Scand 80:35A–36A

    PubMed  CAS  Google Scholar 

  • Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 24:485–493

    PubMed  CAS  Google Scholar 

  • Ungerstedt U, Ljungberg T (1974) Central dopamine neurons and sensory processing. J Psychiatr Res 11:149–150

    PubMed  CAS  Google Scholar 

  • Valenstein ES, Cox VC (1970) Influence of hunger, thirst, and previous experience in the test chamber on stimulus-bound eating and drinking. J Comp Physiol Psychol 70:189–199

    PubMed  CAS  Google Scholar 

  • van den Bos R, Cools AR (1989) The involvement of the nucleus accumbens in the ability of rats to switch to cue-directed behaviours. Life Sci 44:1697–1704

    PubMed  Google Scholar 

  • Vanderwolf CH (1975) Neocortical and hippocampal activation relation to behavior: effects of atropine, eserine, phenothiazines, and amphetamine. J Comp Physiol Psychol 88:300–323

    PubMed  CAS  Google Scholar 

  • West AR, Floresco SB, Charara A, Rosenkranz JA, Grace AA (2003) Electrophysiological interactions between striatal glutamatergic and dopaminergic systems. Ann N Y Acad Sci 1003:53–74

    PubMed  CAS  Google Scholar 

  • White NM (1989) Reward or reinforcement: what’s the difference? Neurosci Biobehav Rev 13:181–186

    PubMed  CAS  Google Scholar 

  • Wickens JR, Reynolds JN, Hyland BI (2003) Neural mechanisms of reward-related motor learning. Curr Opin Neurobiol 13:685–690

    PubMed  CAS  Google Scholar 

  • Wilson C, Nomikos GG, Collu M, Fibiger HC (1995) Dopaminergic correlates of motivated behavior: importance of drive. J Neurosci 15:5169–178

    PubMed  CAS  Google Scholar 

  • Wise RA (1982) Neuroleptics and operant behavior: the anhedonia hypothesis. Behav Brain Sci 5:39–87

    Google Scholar 

  • Wise RA (1985) The anhedonia hypothesis: Mark III. Behav Brain Sci 8:178–186

    Article  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    PubMed  CAS  Google Scholar 

  • Wise RA, Colle LM (1984) Pimozide attenuates free feeding: best scores analysis reveals a motivational deficit. Psychopharmacology (Berl) 84:446–451

    CAS  Google Scholar 

  • Wise RA, Raptis L (1986) Effects of naloxone and pimozide on initiation and maintenance measures of free feeding. Brain Res 368:62–68

    PubMed  CAS  Google Scholar 

  • Wise RA, Spindler J, deWit H, Gerberg GJ (1978a) Neuroleptic-induced “anhedonia” in rats: pimozide blocks reward quality of food. Science 201:262–264

    PubMed  CAS  Google Scholar 

  • Wise RA, Spindler J, Legault L (1978b) Major attenuation of food reward with performance-sparing doses of pimozide in the rat. Can J Psychol 32:77–85

    PubMed  CAS  Google Scholar 

  • Wolterink G, Phillips G, Cador M, Donselaar-Wolterink I, Robbins TW, Everitt BJ (1993) Relative roles of ventral striatal D1 and D2 dopamine receptors in responding with conditioned reinforcement. Psychopharmacology (Berl) 110:355–364

    CAS  Google Scholar 

  • Wyvell CL, Berridge KC (2000) Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J Neurosci 20:8122–8130

    PubMed  CAS  Google Scholar 

  • Yokel RA, Wise RA (1975) Increased lever pressing for amphetamine after pimozide in rats: implications for a dopamine theory of reward. Science 187:547–549

    PubMed  CAS  Google Scholar 

  • Zhang M, Kelley AE (2000) Enhanced intake of high-fat food following striatal mu-opioid stimulation: microinjection mapping and Fos expression. Neuroscience 99:267–277

    PubMed  CAS  Google Scholar 

  • Zhang M, Kelley AE (2002) Intake of saccharin, salt, and ethanol solutions is increased by infusion of a mu opioid agonist into the nucleus accumbens. Psychopharmacology (Berl) 159:415–423

    CAS  Google Scholar 

  • Zhang M, Gosnell BA, Kelley AE (1998) Intake of high-fat food is selectively enhanced by mu opioid receptor stimulation within the nucleus accumbens. J Pharmacol Exp Ther 285:908–914

    PubMed  CAS  Google Scholar 

  • Zhang M, Balmadrid C, Kelley AE (2003) Nucleus accumbens opioid, GABAergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat. Behav Neurosci 117:202–211

    PubMed  CAS  Google Scholar 

  • Zheng H, Corkern M, Stoyanova I, Patterson LM, Tian R, Berthoud HR (2003) Peptides that regulate food intake: appetite-inducing accumbens manipulation activates hypothalamic orexin neurons and inhibits POMC neurons. Am J Physiol Regul Integr Comp Physiol 284:R1436–R1444

    PubMed  CAS  Google Scholar 

  • Zis AP, Fibiger HC (1975) Neuroleptic-induced deficits in food and water regulation: similarities to the lateral hypothalamic syndrome. Psychopharmacologia 43:63–68

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute on Drug Abuse grant DA 09311 (A.E.K.) and National Institute on Mental Health grant MH 74723 (B.A.B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian A. Baldo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldo, B.A., Kelley, A.E. Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacology 191, 439–459 (2007). https://doi.org/10.1007/s00213-007-0741-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0741-z

Keywords

Navigation