Skip to main content
Log in

A priori and a posteriori error analysis of an unfitted HDG method for semi-linear elliptic problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We present a priori and a posteriori error analysis of a high order hybridizable discontinuous Galerkin (HDG) method applied to a semi-linear elliptic problem posed on a piecewise curved, non polygonal domain. We approximate \(\Omega \) by a polygonal subdomain \(\Omega _h\) and propose an HDG discretization, which is shown to be optimal under mild assumptions related to the non-linear source term and the distance between the boundaries of the polygonal subdomain \(\Omega _h\) and the true domain \(\Omega \). Moreover, a local non-linear post-processing of the scalar unknown is proposed and shown to provide an additional order of convergence. A reliable and locally efficient a posteriori error estimator that takes into account the error in the approximation of the boundary data of \(\Omega _h\) is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adak, D., Natarajan, S., Natarajan, E.: Virtual element method for semilinear elliptic problems on polygonal meshes. Appl. Numer. Math. 145, 175–187 (2019)

    Article  MathSciNet  Google Scholar 

  2. Amrein, M.: Adaptive fixed point iterations for semilinear elliptic partial differential equations. Calcolo 56(30), (2019)

  3. Amrein, M., Wihler, T.P.: Fully adaptive Newton-Galerkin methods for semilinear elliptic partial differential equations. SIAM J. Sci. Comput. 37(4), A1637–A1657 (2015)

    Article  MathSciNet  Google Scholar 

  4. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  5. Clément, P.: Approximation by finite element functions using local regularization. ESAIM Math Model Numer Anal Model Math Anal Numer 9(R–2), 77–84 (1975)

    MathSciNet  MATH  Google Scholar 

  6. Cockburn, B.: The Hybridizable discontinuous Galerkin methods. In: Proceedings of the International Congress of Mathematicians., vol. 4, pp. 2749–2775, Hyderabad (2010)

  7. Cockburn, B., Gopalakrishnan, J., Sayas, F.: A projection-based error analysis of HDG methods. Math. Comp. 79(271), 1351–1367 (2010)

    Article  MathSciNet  Google Scholar 

  8. Cockburn, B., Gupta, D., Reitich, F.: Boundary-conforming discontinuous Galerkin methods via extensions from subdomains. J. Sci. Comput. 42(1), 144–184 (2009)

    Article  MathSciNet  Google Scholar 

  9. Cockburn, B., Qiu, W., Solano, M.: A priori error analysis for HDG methods using extensions from subdomains to achieve boundary conformity. Math. Comput. 83(286), 665–699 (2014)

    Article  MathSciNet  Google Scholar 

  10. Cockburn, B., Singler, J., Zhang, Y.: Interpolatory HDG method for parabolic semilinear PDEs. J. Sci. Comput. 79, 1777–1800 (2019)

    Article  MathSciNet  Google Scholar 

  11. Cockburn, B., Solano, M.: Solving Dirichlet boundary-value problems on curved domains by extensions from subdomains. SIAM J. Sci. Comput. 34(1), A497–A519 (2012)

    Article  MathSciNet  Google Scholar 

  12. Cockburn, B., Zhang, W.: A posteriori error estimates for HDG methods. J. Sci. Comput. 51(3), 582–607 (2012)

    Article  MathSciNet  Google Scholar 

  13. Cockburn, B., Zhang, W.: A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 51(1), 676–693 (2013)

    Article  MathSciNet  Google Scholar 

  14. Cockburn, B., Zhang, W.: An a posteriori error estimate for the variable-degree Raviart-Thomas method. Math. Comp. 83(287), 1063–1082 (2014)

    Article  MathSciNet  Google Scholar 

  15. Gatica, G.N.: A simple introduction to the mixed finite element method: theory and applications. Springer Briefs in Mathematics, Springer, Heidelberg (2014)

    Book  Google Scholar 

  16. Grad, H., Rubin, H.: Hydromagnetic equilibria and force-free fields. In: Proceedings of the Second International Conference on the Peaceful uses of Atomic Energy, Geneva, vol. 31,190, pp. 190–197, New York, (1958) United Nations

  17. Harrell, E.M., Layton, W.J.: L2 estimates for Galerkin methods for semilinear elliptic equations. SIAM J. Numer. Anal. 24(1), 52–58 (1987)

    Article  MathSciNet  Google Scholar 

  18. Heid, P., Wihler, T.P.: Adaptive iterative linearization Galerkin methods for nonlinear problems. Math. Comput. 89(326), 2707–2734 (2020)

    Article  MathSciNet  Google Scholar 

  19. Houston, P., Wihler, T.P.: An \(hp\)-adaptive Newton-discontinuous-Galerkin finite element approach for semilinear elliptic boundary value problems. Math. Comput. 87(314), 2641–2674 (2018)

    Article  MathSciNet  Google Scholar 

  20. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41(6), 2374–2399 (2003)

    Article  MathSciNet  Google Scholar 

  21. Sánchez-Vizuet, T., Solano, M.E.: A Hybridizable discontinuous Galerkin solver for the Grad-Shafranov equation. Comput. Phys. Commun. 235, 120–132 (2019)

    Article  MathSciNet  Google Scholar 

  22. Sánchez-Vizuet, T., Solano, M.E., Cerfon, A.J.: Adaptive hybridizable discontinuous Galerkin discretization of the Grad-Shafranov equation by extension from polygonal subdomains. Comput. Phys. Commun. 255, 107239 (2020)

    Article  MathSciNet  Google Scholar 

  23. Shafranov, V.D.: On magneto hydrodynamical equilibrium configurations. Sov. Phys. JETP 6(33), 545–554 (1958)

    MathSciNet  MATH  Google Scholar 

  24. Verfürth, R.: A posteriori error estimators for convection-diffusion equations. Numer. Math. 80, 641–663 (1998)

    Article  MathSciNet  Google Scholar 

  25. Xie, Z., Chen, C.: The interpolated coefficient FEM and its application in computing the multiple solutions of semilinear elliptic problems. Int. J. Numer. Anal. Model. 2(1), 97–106 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15(1), 231–237 (1994)

    Article  MathSciNet  Google Scholar 

  27. Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33(5), 1759–1777 (1996)

    Article  MathSciNet  Google Scholar 

  28. Zhan, J., Zhong, L., Peng, J.: Discontinuous Galerkin methods for semilinear elliptic boundary value problem arXiv:2101.10664 (2021)

Download references

Acknowledgements

Nestor Sánchez is supported by the Scholarship Program of CONICYT-Chile. Tonatiuh Sánchez-Vizuet was partially funded by the US Department of Energy. Grant No. DE-FG02-86ER53233. Manuel E. Solano was partially funded by CONICYT–Chile through FONDECYT project No. 1200569 and by Project AFB170001 of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel E. Solano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

HDG projection

In order to make this manuscript self-contained, in this section we provide previous results that will help us to analyze our discrete scheme. First of all we recall the HDG projection operators introduced by [7]. Given constants \(l_u, l_{\varvec{q}} \in [0,k]\) and a pair of functions \(({\varvec{q}},u) \in H^{1+l_q}(T) \times H^{1+l_u}(T)\), we denote by \(\varvec{\Pi }(\varvec{q},u):=(\varvec{\Pi }_{\mathrm v}\varvec{q},\Pi _{\mathrm w} u)\) the projection over \(\varvec{V}_h\times W_h\) defined as the unique element-wise solutions of

$$\begin{aligned} (\varvec{\Pi }_{\mathrm v}\varvec{q}, \varvec{v})_T&= (\varvec{q}, \varvec{v})_T&\forall \ \varvec{v} \in [\mathbb {P}_{k-1}(T)]^d, \end{aligned}$$
(A.1a)
$$\begin{aligned} (\Pi _{\mathrm w} u, w)_T&= (u,w)_T&\forall \ w\in \mathbb {P}_{k-1}(T), \end{aligned}$$
(A.1b)
$$\begin{aligned} \left\langle \varvec{\Pi }_{\mathrm v}\varvec{q}\cdot \varvec{n} + \tau \Pi _{\mathrm w} u, \mu \right\rangle _{F}&= \left\langle \varvec{q} \cdot \varvec{n} + \tau u, \mu \right\rangle _F&\forall \ \mu \in \mathbb {P}_k(F), \end{aligned}$$
(A.1c)

for every element \(T\in \mathcal {T}_h\), and \(F\in \partial T\). The \(L^2\) projection into \(M_h\) will be denoted as \(P_M\). If the stabilization function is chosen so that \(\tau _T^{\max } := \max \tau |_{\partial T}>0\), then by [7] there is a constant \(C>0\) independent of T and \(\tau \) such that

$$\begin{aligned} \Vert \varvec{\Pi }_{\mathrm v}\varvec{q} - \varvec{q}\Vert _T&\le C h_T^{l_{\varvec{q}}+1} |\varvec{q}|_{\varvec{H}^{l_{\varvec{q}}+1}(T)} + C h_T^{l_u+1} \tau _T^* |u|_{H^{l_u+1}(T)}, \end{aligned}$$
(A.2a)
$$\begin{aligned} \Vert \Pi _{\mathrm w} u - u\Vert _T&\le C h_T^{l_u+1} |u|_{H^{l_u+1}(T)} + C \dfrac{h_T^{l_{\varvec{q}}+1}}{\tau _T^{\max }} |\nabla \cdot \varvec{q}|_{H^{l_{\varvec{q}}}(T)}. \end{aligned}$$
(A.2b)

Here \(\tau _T^* := \max \tau |_{\partial T \setminus F^*}\) and \(F^*\) is a face of T at which \(\tau |_{\partial T}\) is maximum. As is customary, the symbol \(|\cdot |_{H^s}\) is to be understood as the Sobolev semi norm of order \(s\in {\mathbb {R}}\).

Proof of Lemma 1

In this section we present the proof of Lemma 1, relating to the well posedness of the auxiliary non linear local problem that leads to the post processed approximation \(u^*_h\). We re state the Lemma here for convenience.

Lemma 1

The local post processing \(u_h^*\) is well defined for L small enough. Moreover, if \(Lh^2<1\) and \(k\ge 1\), then

$$\begin{aligned} \Vert u-u_h^*\Vert _{0,\mathcal {T}_h}&\lesssim (Rh)^{1/2} (h^{l_u+1} |u|_{l_u+2,\mathcal {T}_h} + h^{l_u+1} |\varvec{q}|_{l_{\varvec{q}}+2,\mathcal {T}_h} )+h^{l_u+2} |u|_{l_u+2,\mathcal {T}_h}\nonumber \\&\quad +L h^{l_u+1} |u|_{l_u+2,\mathcal {T}_h}, \end{aligned}$$
(B.1a)
$$\begin{aligned} |u-u_h^*|_{1,T}&\lesssim h_T^{l_u+1} |u|_{l_u+1,T} + Lh_T\Vert \varepsilon ^u \Vert _{0,T} +\Vert {\varvec{q}} - {\varvec{q}}_h\Vert _{0,T} + Lh_T\Vert u-u_h\Vert _{0,T}, \end{aligned}$$
(B.1b)

and

$$\begin{aligned} \sum _{e\in {\mathcal {E}}_h^\partial } h_e^{1/2} \Vert [ \! [ {u_h^*} ] \! ] \Vert _e&\lesssim \Vert u-u_h^*\Vert ^{1/2}_{0,\mathcal {T}_h} \left( \Vert u-u_h^*\Vert _{0,\mathcal {T}_h}^2 + h^2 |u-u_h^*|^2_{1,\mathcal {T}_h} \right) ^{1/4}. \end{aligned}$$
(B.1c)

Proof

We will prove first that the problem (2.3) is well posed. For this, we will use a fixed point argument. Let \(T\in \mathcal {T}_h\). We define the operator \(S: \mathbb {P}_{k+1}(T) \rightarrow \mathbb {P}_{k+1}(T)\) as \(S (\zeta )= z\), where z is the only solution of

$$\begin{aligned} (\kappa \nabla z, \nabla w)_T&= -(q_h,\nabla w)_T + (\mathcal {F}(u_h),w)_T - (\mathcal {F}(\zeta ), w)_T,&\forall \ w \in \mathbb {P}_{k+1}(T), \end{aligned}$$
(B.2a)
$$\begin{aligned} (z,w)_T&= (u_h,w)_T ,&\forall \ w\in \mathbb {P}_0(T). \end{aligned}$$
(B.2b)

Note that S is surjective because (B.2) is well-posed. We will show now that S has a unique a fixed point and in that case it is the solution of (2.3). Let \(\zeta _1,\zeta _2 \in \mathbb {P}_{k+1}(T)\) such that \(S(\zeta _1)=z_1\) and \(S(\zeta _2)=z_2\), with \(z_1\) and \(z_2\) satisfying (B.2). We observe that \(\zeta _1-\zeta _2 \in \mathbb {P}_{k+1}(T)\) and

$$\begin{aligned} (\kappa \nabla (z_1-z_2), \nabla w)_T&= - (\mathcal {F}(\zeta _1)-\mathcal {F}(\zeta _2), w)_T,&\forall \ w \in \mathbb {P}_{k+1}(T), \end{aligned}$$
(B.3a)
$$\begin{aligned} (z_1-z_2,w)_T&= 0 ,&\forall \ w\in \mathbb {P}_0(T). \end{aligned}$$
(B.3b)

Then, for \(i=1\) and 2, we set \({\overline{z}}_i:= \displaystyle \dfrac{1}{|T|} \int _T z_i\) and noticing that \({\overline{z}}_1={\overline{z}}_2\) by Eq. (B.3b), we have

$$\begin{aligned} \Vert z_1-z_2\Vert ^2_{T} = \Vert (z_1-\overline{z_1}) - (z_2-\overline{z_2}) \Vert ^2_{T} \le C_F^2 \Vert \kappa ^{1/2} \nabla (z_1-z_2)\Vert ^2_T, \end{aligned}$$

where we have used the Friedrichs inequality with constant \(C_F>0\). Taking \(w= z_1-z_2\) in (B.3a), and recalling that \({\mathcal {F}}\) is Lipschitz continuous with constant L, we obtain

$$\begin{aligned} \Vert z_1-z_2\Vert ^2_{T} \le C_F^2 ( \mathcal {F}(\zeta _2) - \mathcal {F}(\zeta _1) ,z_1-z_2)_T \le C_F^2L \Vert \zeta _2 - \zeta _1\Vert _{T} \Vert z_1-z_2\Vert _{T}. \end{aligned}$$

Thus, the operator S is a contraction as long as \(C_F^2 L < 1\). If that is indeed the case, it has a unique fixed point.

For the inequality (B.1a), let \(P_0\) and \(P_{W^*}\) be the \(L^2-\)projectors into the space of constants and into \(W_h^*\) respectively and decompose

$$\begin{aligned} u-u_h^* = (I-P_{W^*})u + P_0(P_{W^*}u - u_h^*) + (I-P_0)(P_{W^*}u-u_h^*) , \end{aligned}$$
(B.4)

We will now proceed to bound each of the terms on the right hand side of this expression separately in order to estimate the difference \(u - u^*_h\). For the first term it is easy to see that

$$\begin{aligned} \Vert (I - P_{W^*})u\Vert _{0,T} \lesssim h_T^{l_u+2} |u|_{l_u+2,T}. \end{aligned}$$
(B.5)

For the second term we first notice that, since \(W^*\) is a space of piecewise polynomials, the definitions of \(P_{W^*}\) and \(\Pi _{W}\), since \(k\ge 1\), imply \( P_0\,P_{W^*}u = P_0u = P_0\,\Pi _{W}u \)

$$\begin{aligned} \Vert P_0(P_{W^* }u - u_h^*)\Vert _{0,T} = \Vert P_0(\Pi _{W} u - u_h)\Vert _{0,T} \le \Vert \Pi _{W} u - u_h\Vert _{0,T}= \Vert \varepsilon ^u \Vert _{0,T}.\nonumber \\ \end{aligned}$$
(B.6)

In the first equality we have made use of the fact that, due the definition of \(u_h^*\) in Eq. (2.3b), we have \(P_0 u_h^* = P_0 u_h\).

Now we move on to the third term in (B.4) and note that for every \({\varvec{v}}\) in the space of vector valued functions with components belonging to \(W^*_h\) and \(T\in {\mathcal {T}}\) it holds that

$$\begin{aligned} (\kappa \nabla (u-u_h^*), {\varvec{v}})_T =\, \left( \kappa \nabla \left( P_{W^*}u-u_h^*\right) , {\varvec{v}}\right) _T = (\kappa \nabla \,(I-P_0)(P_{W^*}u-u_h^*), {\varvec{v}})_T.\nonumber \\ \end{aligned}$$
(B.7)

Moreover, for the exact solutions \((u,{\varvec{q}})\), we have \(\kappa \nabla u = -{\varvec{q}} \) so that the difference \(u-u_h^*\) satisfies

$$\begin{aligned}&(\kappa \nabla (u-u_h^*), \nabla w)_T =\,- (\varvec{q} - \varvec{q}_h, \nabla w)_T\\&+ (\mathcal {F}(u_h^*) - \mathcal {F}(u),w )_T - (\mathcal {F}(u_h) - \mathcal {F}(u),w )_T \end{aligned}$$

for every \(w\in W^*_h\) and \(T\in {\mathcal {T}}\). Letting \(w:=(I-P_0)(P_{W^*}u-u_h^*)\in W^*\) and \(\nabla w\) be the test functions above, and using conditions (B.7) leads to

$$\begin{aligned} (\kappa \nabla w, \nabla w)_T = -(\varvec{q} - \varvec{q}_h, \nabla w)_T + (\mathcal {F}(u_h^*) - \mathcal {F}(u),w )_T + (\mathcal {F}(u)- \mathcal {F}(u_h),w)_T. \end{aligned}$$

From this equation, using the the scaling argument \(\Vert w\Vert _{0,T} \lesssim h_T |w|_{1,T}\) and the inverse inequality \(|w|_{1,T}\lesssim h_T^{-1} \Vert w\Vert _{0,T}\) we arrive at

$$\begin{aligned}&h_T^{-2}\, \Vert w\Vert ^{2}_{0,T}\lesssim {{\overline{\kappa }}}|w|^2_{1,T}\le \, \Vert {\varvec{q}} - {\varvec{q}}_h\Vert _{0,T}|w|_{1,T}\\&+ L\, \left( \Vert u-u^*_h\Vert _{0,T} + \Vert u-u_h\Vert _{0,T}\right) \Vert w\Vert _{0,T} \end{aligned}$$

from which we conclude that

$$\begin{aligned} \Vert w\Vert _{0,T}\lesssim h_T\, \Vert {\varvec{q}} - {\varvec{q}}_h\Vert _{0,T} + L \, h_T^2\, \left( \Vert u-u^*_h\Vert _{0,T} + \Vert u-u_h\Vert _{0,T}\right) . \end{aligned}$$

Recalling the decomposition (B.4), and the estimates (B.5), (B.6) we can bound the term \(\Vert u-u^*_h\Vert _{0,T}\) on the right hand side yielding

$$\begin{aligned}&(1-Lh^2_T)\Vert w\Vert _{0,T} \lesssim h_T\, \Vert {\varvec{q}} - {\varvec{q}}_h\Vert _{0,T}\nonumber \\&+ L \, h_T^2\, \left( h_T^{l_u+2} |u|_{l_u+2,T} + \Vert \varepsilon ^u \Vert _{0,T} + \Vert u-u_h\Vert _{0,T}\right) \end{aligned}$$
(B.8)

Combining (B.8) above with (B.5) and (B.6) once more we arrive at

$$\begin{aligned} (1-\, Lh_T^2)\, \Vert u-u_h^*\Vert _{0,T}&\lesssim \, (1-Lh_T^2)h_T^{l_u+2} |u|_{l_u+2,T} + (1-Lh_T^2)\Vert \varepsilon ^u \Vert _{0,T} \\&\quad +h_T\, \Vert {\varvec{q}} - {\varvec{q}}_h\Vert _{0,T} \\&\quad +L \, h_T^2 \left( h_T^{l_u+2} |u|_{l_u+2,T} + \Vert \varepsilon ^u \Vert _{0,T} + \Vert u-u_h\Vert _{0,T}\right) \\&\lesssim \, h_T^{l_u+2} |u|_{l_u+2,T} + \Vert \varepsilon ^u \Vert _{0,T}\\&\quad +h_T\, \Vert {\varvec{q}} - {\varvec{q}}_h\Vert _{0,T} + L \, h_T^2\, \Vert u-u_h\Vert _{0,T}. \end{aligned}$$

So, assuming \(Lh_T^2<1\) for each \(T\in \mathcal {T}_h\), results

$$\begin{aligned} \Vert u-u_h^*\Vert _{0,T} \lesssim h_T^{l_u+2} |u|_{l_u+2,T} + \Vert \varepsilon ^u \Vert _{0,T} +h_T\, \Vert {\varvec{q}} - {\varvec{q}}_h\Vert _{0,T} + Lh_T^2\Vert u-u_h\Vert _{0,T}. \end{aligned}$$

By adding on each \(T\in \mathcal {T}_h\), the estimate (B.1a) is concluded after considering the results in Theorem 2. Now, if we apply the inverse inequality to the estimate above, we arrive at

$$\begin{aligned} (1-Lh^2_T)|w|_{1,T} \lesssim \Vert {\varvec{q}} - {\varvec{q}}_h\Vert _{0,T} + L h_T\, \ \left( h_T^{l_u+2} |u|_{l_u+2,T} + \Vert \varepsilon ^u \Vert _{0,T} + \Vert u-u_h\Vert _{0,T}\right) . \end{aligned}$$

Assuming again \(Lh_T^2<1\) for each \(T\in \mathcal {T}_h\), (B.1b) follows.

Finally, using the trace inequality, the fact that \(h_e \Vert v\Vert ^2_{0,e} \lesssim \Vert v\Vert _{0,T} \Big ( \Vert v\Vert ^2_{0,T} + h^2_T |v|^2_{1,T} \Big )^{1/2}\) for any \(v \in [H^1(K)]^d\), and the estimates (B.1a) and (B.1b), we have

$$\begin{aligned} \sum _{e\in \mathcal {E}_h} h_e \Vert [ \! [ {u_h^*} ] \! ] \Vert ^2_{0,e}&\lesssim \sum _{e\in \mathcal {E}_h} \sum _{T'\in \omega _e} h_e \Vert u-u_h^*|_{T'}\Vert _{0,e}^2 \\&\lesssim \sum _{e\in \mathcal {E}_h} \sum _{T'\in \omega _e} \Vert u-u_h^*\Vert _{0,T'}\left( \Vert u-u_h^*\Vert _{0,T'}^2 + h_{T'}^2 |u-u_h^*|^2_{1,T'} \right) ^{1/2}, \end{aligned}$$

which implies (B.1c). \(\square \)

Auxiliary estimates

The following results were used throughout the text. We include them here for completeness.

The first lemma was needed to bound the terms in the decomposition of \(\mathbb {T}^u\) carried out in Lemma 6.

Lemma C1

[9, Lemma 5.5] Suppose Assumption (3.2d) and the elliptic regularity inequality (3.10) hold. Then,

$$\begin{aligned} \Vert {(h^{\perp })}^{-1/2} (Id_M-P_M) \psi \Vert _{\Gamma _h}&\lesssim h \Vert \Theta \Vert _{\Omega }, \end{aligned}$$
(C.1a)
$$\begin{aligned} \Vert l^{1/2} (Id_M-P_M)\partial _n \psi \Vert _{\Gamma _h}&\lesssim R^{1/2} h \Vert \Theta \Vert _{\Omega }, \end{aligned}$$
(C.1b)
$$\begin{aligned} \Vert l^{-3/2} (\psi + l \partial _n \psi ) \Vert _{\Gamma _h}&\lesssim \Vert \Theta \Vert _{\Omega }, \end{aligned}$$
(C.1c)
$$\begin{aligned} \Vert l^{-1} \psi \Vert _{\Gamma _h}&\lesssim \Vert \Theta \Vert _{\Omega }. \end{aligned}$$
(C.1d)

The result below is used when deducing the bound for the term of the estimator involving the jump in the flux.

Lemma C2

Let \(e\in \mathcal {E}^\partial _h\) and \(\varvec{v}\in \varvec{H}(\mathbf{div} ;T^e)\). It holds

$$\begin{aligned} \Vert E_{T^e}(\varvec{v})\Vert ^2_{T^e_{ext}} \lesssim \,&r_e^2 \, \Vert \varvec{v}\Vert ^2_{T^e} + r_e^2\, h_T^2 \Vert \nabla \cdot \varvec{v}\Vert ^2_{T^e} . \end{aligned}$$
(C.2a)

Proof

We employ a scaling argument. Let \(\Phi : T^e\rightarrow {\widehat{T}}\) be the affine mapping from \(T^e\) to the reference element \({\widehat{T}}\) and set \(\widehat{T_{ext}^e} := \Phi ^{-1}(T_{ext}^e)\). We have

$$\begin{aligned} \Vert E_{T^e}(v)\Vert ^2_{T^e_{ext}}&= 2|T^e_{ext}| \Vert \widehat{E}(\widehat{v})\Vert _{\widehat{T^e_{ext}}}^2 \lesssim |T^e_{ext}| \Vert \widehat{v}\Vert ^2_{H(\mathbf{div} ; {\widehat{T}})} = |T^e_{ext}| \left( \Vert \widehat{v} \Vert ^2_{\widehat{T}} + \Vert \widehat{\nabla } \cdot \widehat{v} \Vert ^2_{\widehat{T}} \right) \\&\lesssim |T^e_{ext}| \left( \dfrac{1}{|T^e|} \, \Vert v\Vert ^2_{T^e} + \Vert \nabla \cdot v\Vert ^2_{T^e} \right) . \end{aligned}$$

Thus, considering that \(|T^e_{ext}| \lesssim (H_e^{\perp })^2 = R_e^2\, (h_e^{\perp })^2 \le r_e^2\, h_T^2\), and \(|T^e|\lesssim h_T^2\), the inequality (C.2a) can be deduced. \(\square \)

The following result pertaining bubble functions is useful when addressing the local efficiency of the error estimator.

Lemma C3

[24, Lemma 3.3] Let \(B_T:= \Pi _{i=1}^{d+1} \lambda _i\) be the element–bubble function associated to \(T\in \mathcal {T}_h\), where \(\{\lambda _i\}_{i=1}^{d+1}\) are the barycentric coordinates of T, and \(B_e:= \Pi _{\begin{array}{c} i=1\\ i\ne j \end{array}}^{d+1} \lambda _i\) be the face–bubble function associated to \(e\subset \partial T\), where \(\lambda _j\) vanishes on e. Then, the following estimates hold

$$\begin{aligned} \begin{array}{rlcrlcrl} \Vert \varvec{v}\Vert ^2_T \lesssim &{} (\varvec{v}, B_T\varvec{v})_T, &{}\quad &{} \Vert B_T\varvec{v}\Vert _T \lesssim &{} \Vert \varvec{v}\Vert _T, &{}\quad &{} \Vert B_T\varvec{v}\Vert _{1,T} \lesssim &{} h_T^{-1}\, \Vert \varvec{v}\Vert _T, \\ \Vert \varvec{\mu }\Vert ^2_e \lesssim &{} (\varvec{\mu }, B_e\varvec{\mu })_e, &{}\quad &{} \Vert B_e\varvec{\mu }\Vert _{\Delta _e} \lesssim &{} h_e^{1/2}\, \Vert \varvec{\mu }\Vert _e, &{}\quad &{} \Vert B_e\varvec{\mu }\Vert _{1,\Delta _e}, \lesssim &{} h_e^{-1/2}\, \Vert \varvec{\mu }\Vert _e, \end{array} \end{aligned}$$
(C.3)

for all \(\varvec{v}\in [\mathbb {P}_k(T)]^d, \ T\in \mathcal {T}_h\) and for each \(\varvec{\mu }\in [\mathbb {P}_k(e)]^d, \ e\in \mathcal {E}_h\).

Clément and Oswald interpolants

The following two interpolants are useful in the arguments leading to the reliability of the estimator. They allow to control the behavior of functions with piecewise \(H^1\) regularity by representatives belonging to the global \(H^1_0(\Omega )\) space.

First, in the next lemma, we state the approximation properties of the Clément interpolation operator \(\mathcal {C}_h: L^2(\Omega _h) \rightarrow W_h^{1,c} \cap H_0^1(\Omega )\), introduced in [5] as

$$\begin{aligned} \mathcal {C}_h w := \sum _{z\in \mathcal {N}_h} \left( \dfrac{1}{|\Omega _z|} \int _{\Omega _z} w \ dx \right) \phi _z \end{aligned}$$

where \(\phi _z\) is the \(\mathbb {P}_1\) nodal basic functions associated to the interior vertex z, \(\Omega _z = supp \ \phi _z\), and \(W_h^{1,c}:= \{ w\in C(\Omega ) : w|_T\in {\mathbb {P}}_1(T), T\in \mathcal {T}_h \}\).

Lemma D4

[24, Lemma 3.2] For any \(T \in \mathcal {T}_h , \ e\in \mathcal {E}_h^i\) and \(0\le m\le 1\), the following estimates hold, for all \(w\in H_0^1(\Omega )\)

$$\begin{aligned}&\Vert \mathcal {C}_h w \Vert _{m,\Omega } \lesssim \Vert w\Vert _{m,\Omega }, \quad \Vert w-\mathcal {C}_h w\Vert _{0,T} \lesssim h_T \Vert w\Vert _{1,\Delta _T},\\&\quad \Vert w-\mathcal {C}_h w\Vert _{0,e} \lesssim h_e^{1/2} \Vert w\Vert _{1,\Delta _e}, \end{aligned}$$

where \(\Delta _T:= \{ T'\in \mathcal {T}_h : {\overline{T}} \cap \overline{T'} \ne \emptyset \} \) and \(\Delta _e = \{T'\in \mathcal {T}_h: \overline{T'} \cap {\overline{e}} \ne \emptyset \}\).

The next results shows that an element w of \(W_h^*\) can be approximated by a continuous function \(\widetilde{w}\in W_h^*\), sometimes referred to as Oswald interpolant, and that the approximation error can be controlled by the size of the inter-element jumps of w.

Lemma D5

[20, Theorem 2.2] For any \(w_h\in W_h^*\) and any multi-index with \(|\alpha |=0,1\), the following approximation results holds: Let \(u_D\) be the restriction to \(\Gamma _h\) of a function in \(W_h^*\cap H^1(\Omega _h)\). then there exists a function \(\widetilde{w}_h\in W_h^*\cap H^1(\Omega _h)\) satisfying \(\widetilde{w}_h|_{\Gamma } = u_D\), and

$$\begin{aligned} \sum _{T\in \mathcal {T}_h} \Vert D^{\alpha } (w_h - \widetilde{w}_h)\Vert ^2_T \le C_O \left( \sum _{e\in \mathcal {E}_h^\circ } h_e^{1-2|\alpha |} \Vert [ \! [ {w_h} ] \! ] \Vert ^2_e + \sum _{e\in \mathcal {E}_h^{\partial }} h_e^{1-2|\alpha |} \Vert u_D-w_h\Vert ^2_e\right) , \end{aligned}$$

above, \(C_O\) is a positive constant independent of the mesh size.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez, N., Sánchez-Vizuet, T. & Solano, M.E. A priori and a posteriori error analysis of an unfitted HDG method for semi-linear elliptic problems. Numer. Math. 148, 919–958 (2021). https://doi.org/10.1007/s00211-021-01221-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-021-01221-8

Mathematics Subject Classification

Navigation