Skip to main content
Log in

Sparse approximation of multilinear problems with applications to kernel-based methods in UQ

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We provide a framework for the sparse approximation of multilinear problems and show that several problems in uncertainty quantification fit within this framework. In these problems, the value of a multilinear map has to be approximated using approximations of different accuracy and computational work of the arguments of this map. We propose and analyze a generalized version of Smolyak’s algorithm, which provides sparse approximation formulas with convergence rates that mitigate the curse of dimension that appears in multilinear approximation problems with a large number of arguments. We apply the general framework to response surface approximation and optimization under uncertainty for parametric partial differential equations using kernel-based approximation. The theoretical results are supplemented by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alexanderian, A., Petra, N., Stadler, G., Ghattas, O.: Mean-variance risk-averse optimal control of systems governed by PDEs with random parameter fields using quadratic approximations. arXiv:1602.07592 (2016)

  2. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chkifa, A., Cohen, A., Schwab, C.: Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. J. Math. Pures Appl. 103(2), 400–428 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dereich, S., Mueller-Gronbach, T.: General multilevel adaptations for stochastic approximation algorithms. arXiv:1506.0548 (2015)

  5. Dong, Z., Georgoulis, E.H., Levesley, J., Usta, F.: Fast multilevel sparse Gaussian kernels for high-dimensional approximation and integration. arXiv:1501.03296 (2015)

  6. Dung, D.: Continuous algorithms in n-term approximation and non-linear widths. J. Approx. Theory 102(2), 217–242 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fasshauer, G., McCourt, M.: Kernel-Based Approximation Methods Using MATLAB. World Scientific, Singapore (2016)

    MATH  Google Scholar 

  8. Georgoulis, E.H., Levesley, J., Subhan, F.: Multilevel sparse kernel-based interpolation. SIAM J. Sci. Comput. 35(2), A815–A831 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18(3–4), 209–232 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gerstner, T., Heinz, S.: Dimension-and time-adaptive multilevel Monte Carlo methods. In: Sparse Grids and Applications, pp. 107–120. Springer (2012)

  11. Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Griebel, M., Oettershagen, J.: On tensor product approximation of analytic functions. J. Approx. Theory 207, 348–379 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Griebel, M., Harbrecht, H.: A note on the construction of L-fold sparse tensor product spaces. Constr. Approx. 38(2), 235–251 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Griebel, M., Harbrecht, H.: On the construction of sparse tensor product spaces. Math. Comput. 82(282), 975–994 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems. In: de Groen, P., Beauwens, R. (eds.) Iterative Methods in Linear Algebra, pp. 263–281. Elsevier, Amsterdam (1992)

    Google Scholar 

  16. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer, New York (2012)

    Book  MATH  Google Scholar 

  17. Haji-Ali, A.-L., Nobile, F., Tamellini, L., Tempone, R.: Multi-index Stochastic collocation convergence rates for random PDEs with parametric regularity. Found. Comput. Math. 16(6), 1555–1605 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haji-Ali, A.-L., Nobile, F., Tamellini, L., Tempone, R.: Multi-index stochastic collocation for random PDEs. Comput. Method. Appl. Mech. Eng. 306, 95–122 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Harbrecht, H., Peters, M., Siebenmorgen, M.: Multilevel accelerated quadrature for PDEs with log-normally distributed diffusion coefficient. SIAM/ASA J. Uncertain. Quantif. 4(1), 520–551 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Harbrecht, H., Peters, M., Siebenmorgen M.: On multilevel quadrature for elliptic stochastic partial differential equations. In: Sparse Grids and Applications, pp. 161–179. Springer, New York (2012)

  21. Heinrich, S.: Multilevel Monte Carlo methods. In: International Conference on Large-Scale Scientific Computing, pp. 58–67. Springer, New York (2001)

  22. Kuo, F.Y., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50(6), 3351–3374 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kuo, F.Y., Scheichl, R., Schwab, C., Sloan, I.H., Ullmann, E.: Multilevel Quasi-Monte Carlo methods for lognormal diffusion problems. Math. Comput. 86(308), 2827–2860 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm. Sci. 20(4), 733–737 (1966)

    MathSciNet  MATH  Google Scholar 

  25. Novak, E., Ritter, K.: High dimensional integration of smooth functions over cubes. Numer. Math. 75(1), 79–97 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)

  27. Sahinidis, N.V.: Optimization under uncertainty: state-of-the-art and opportunities. Comput. Chem. Eng. 28(6), 971–983 (2004)

    Article  Google Scholar 

  28. Schaback, R., Wendland, H.: Kernel techniques: from machine learning to meshless methods. Acta Numer. 15(5), 543–639 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schreiber, A.: Die Methode von Smolyak bei der multivariaten Interpolation’. PhD thesis. Universität Göttingen (2000)

  30. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT press, Cambridge (2001)

    Google Scholar 

  31. Shapiro, A.: Stochastic programming approach to optimization under uncertainty. Math. Program. 112(1), 183–220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2014)

    MATH  Google Scholar 

  33. Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Math. Dokl. 4, 240–243 (1963)

    MATH  Google Scholar 

  34. Stein, M.L.: Interpolation of spatial data: some theory for kriging. Springer, New York (2012)

    Google Scholar 

  35. Teckentrup, A.L., Jantsch, P., Webster, C.G., Gunzburger, M.: A multilevel stochastic collocation method for partial differential equations with random input data. SIAM/ASA J. Uncertain. Quantif. 3(1), 1046–1074 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wahba, G.: Interpolating Surfaces: High Order Convergence Rates and Their Associated Designs, with Application to X-ray Image Reconstruction. Technical report, DTIC (1978)

  37. Wasilkowski, G.W., Wozniakowski, H.: Explicit cost bounds of algorithms for multivariate tensor product problems. J. Complex. 11(1), 1–56 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  39. Wendland, H., Rieger, C.: Approximate interpolation with applications to selecting smoothing parameters. Numer. Math. 101(4), 729–748 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

S. Wolfers and R. Tempone are members of the KAUST Strategic Research Initiative, Center for Uncertainty Quantification in Computational Sciences and Engineering. R. Tempone received support from the KAUST CRG3 Award Ref: 2281. F. Nobile received support from the Center for ADvanced MOdeling Science (CADMOS). We thank Abdul-Lateef Haji-Ali for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sören Wolfers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nobile, F., Tempone, R. & Wolfers, S. Sparse approximation of multilinear problems with applications to kernel-based methods in UQ. Numer. Math. 139, 247–280 (2018). https://doi.org/10.1007/s00211-017-0932-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0932-4

Mathematics Subject Classification

Navigation